Skip to main content

Advertisement

Log in

Screening, cloning, enzymatic properties of a novel thermostable cellulase enzyme, and its potential application on water hyacinth utilization

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Cellulose is the cheapest, natural, renewable organic substance that is used as a carbon source in various fields. Water hyacinth, an aquatic plant rich in cellulose, is often used as a raw material in fuel production. However, natural cellulase can be hardly used in industrial production on account of its low thermal stability and activity. In this study, a metagenomic library was constructed. Then, a new cellulase gene, cel1029, was screened by Congo red staining and expressed in the prokaryotic system. Enzymatic properties of Cel1029 were explored, including optimum temperature and pH, thermal and pH stability, and tolerance against organic solvents, metal ions, and salt solutions. Finally, its ability of degrading water hyacinth was identified and evaluated. Cel1029 displayed high homology with endoglucanase in the glycoside hydrolase family 5 (GH5) and had high stability across a broad temperature range. More than 86% of its enzymatic activities were retained between 4 and 60 °C after 24 h of incubation. Single-factor analysis and orthogonal design were further conducted to determine the optimal conditions for the highest reducing sugar yield of water hyacinth. Interestingly, Cel1029 efficiently transformed water hyacinth with a reducing sugar yield of 430.39 mg/g in 22 h. These findings may open the door for significant industrial applications of a novel GH5 cellulase (NCBI Reference Sequence: MK051001, Cel1029) and help identify more efficient methods to degrade cellulose-rich plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amitha PR, Christopher WS, Patrik D, Jane K, Helcio B, Masood H, Blake AS, Steven WS, Michael PT, Jean SVG (2013) Discovery of microorganisms and enzymes involved in high-solids decomposition of rice straw using metagenomic analyses. Plots One 8:2–10

    Google Scholar 

  • Amriani F, Salim FA, Iskandinata I (2016) Physical and biophysical pretreatment of water hyacinth biomass for cellulase enzyme production. Chem Biochem Eng Q 30:237–244

    Article  CAS  Google Scholar 

  • Asrofi M, Abral H, Putra YK, Kim HJ (2018) Effect of duration of sonication during gelatinization on properties of tapioca starch water hyacinth fiber biocomposite. Int J Biol Macromol 108:167–176

    Article  CAS  PubMed  Google Scholar 

  • Azadian F, Badoei-Dalfard A, Namaki-Shoushtari A, Karami Z, Hassanshahian M (2017) Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. J Genet Eng Biotechnol 15(1):187–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Bálint S, Mátyás S, Zoltán S, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. C R Biol 334(11):812–823

    Article  CAS  Google Scholar 

  • Bao L, Huang Q, Lei C, Jungang Z, Hong L (2011) Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome. J Mol Catal B-Enzym 73:104–110

    Article  CAS  Google Scholar 

  • Bayer S, Ballschmiter M, Greiner-Stoeffele T (2009) Identification of a new lipolytic enzyme family and several novel nitrilases in metagenomic libraries. New Biotechnol 25(S):S72–S73

    Article  Google Scholar 

  • Borjesson J, Engqvist M, Sipos B, Tjerneld F (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzym Microb Technol 41(1-2):186–195

    Article  CAS  Google Scholar 

  • Meneses C, Silva B, Medeiros B, Serrato R, Johnston-Monje D (2016) A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues. Molecules 21:831

  • Chai SM, Zhang XL, Jia ZY, Xu XF, Zhang YF, Wang FC, Feng ZY (2020) Identification and characterization of a novel bifunctional cellulase/hemicellulase from a soil metagenomic library. Appl Microbiol Biotechnol 104(17):7563–7572

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman MT, Bates PA, Crampton JM (2001) Preliminary characterisation of esterase and platelet-activating factor (PAF)-acetylhydrolase activities from cat flea (Ctenocephalides felis) salivary glands. Insect Biochem Mol Biol 31:157–164

    Article  CAS  PubMed  Google Scholar 

  • Chia K, Bao C, Yung L, Jiann HC, Chwen JS (2016) Production of resveratrol by piceid deglycosylation using cellulase. Catalysts 6:32–42

    Article  Google Scholar 

  • Chungyi W, Yiru H, Changchai N, Helen C, Hsintang L, Wensheng T, Yuantay S (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp strain NTU-05. Enzyme Microb Tech 44(6–7):373–379

    Google Scholar 

  • Costa S, Rugiero I, Uria CL (2018) Lignin degradation efficiency of chemical pre-treatments on banana rachis destined to bioethanol production. Biomolecules 8:141–156

    Article  PubMed Central  CAS  Google Scholar 

  • Das A, Paul T, Halder SK, Maity C, Das MPK, Pati BR, Mondal KC (2013) Study on regulation of growth andbiosynthesis of cellulolytic enzymes from newly isolated Aspergillus fumigatus ABK9. Pol J Microbiol 62:31–43

    Article  CAS  PubMed  Google Scholar 

  • Das A, Ghosh P, Paul T, Uma B, Ranjan P, Keshab C (2016) Mondal production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). Biotech 6:70

    Google Scholar 

  • Dehghanikhah F, Shakarami J, Asoodeh A (2020) Purification and biochemical characterization of alkalophilic cellulase from the symbiotic Bacillus subtilis BC1 of the leopard moth Zeuzera pyrina (L.) (Lepidoptera; Cossidae). Curr Microbiol. https://doi.org/10.1007/s00284%2D%2D020-01938-z

  • Divyanshi S, Parul S, Kamal D, Anuradha S (2019) Endoglucanase gene of M42 aminopeptidase/endoglucanase family from thermophilic Bacillus sp PW1 and PW2 isolated from Tattapani hot spring, Himachal Pradesh, India. J Genet Eng Biotechnol 17(1):1–11

    Google Scholar 

  • Fan XJ, Liang MJ, Wang L, Chen R, Li H, Liu XL (2017) Aii810, a novel cold-adapted N-acylhomoserine lactonase discovered in a metagenome, can strongly attenuate Pseudomonas aeruginosa virulence factors and biofilm formation. Front Microbiol 8:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Farias N, Almeida I, Meneses C (2018) New bacterial phytase through metagenomic prospection. Molecules 23(2):448

  • Ganguly A, Das S, Bhattacharya A, Dey A, Pradip KC (2013) Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters. Indian J Exp Biol 51:556–566

    CAS  PubMed  Google Scholar 

  • Garg R, Srivastava R, Brahma V, Verma L, Karthikeyan S, Sahni G (2016) Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. entific Reports 6:39634

  • Griffiths BS, Ritz K, Glover LA (1996) Broad-scale approaches to the determination of soil microbial community structure: application of the community DNA hybridization technique. Microb Ecol 31:269–280

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnvoravongchai P, Singwisut R, Ounjai P, Amornrat A, Surang C (2020) Isolation and characterization of thermophilic cellulose and hemicellulose degrading bacterium, Thermoanaerobacterium sp R63 from tropical dry deciduous forest soil. PLoS One 15(7):e0236518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiroshi T, Naoki N, Yoshihiko A, Kouichi N, Makoto S (2008) Gene cloning of cellobiohydrolase II from the white rot fungus irpex lacteus MC-2 and Its expression in pichia pastoris. Biosci Biotechnol Biochem 72(12):3142–3147

    Article  CAS  Google Scholar 

  • Ismail AM, Naby MA, Fattah AF (1995) Utilization of water hyacinth cellulose for production of cellobiase-rich preparation by Aspergillus niger. Microbios 83:191–198

    CAS  PubMed  Google Scholar 

  • Jo H, Mark L, David M, Christian R, Robert M (2002) Cloning the metagenome: culture-independent access to the diversity and functions of the uncultivated microbial world. Method Microniol 33:241–255

    Article  Google Scholar 

  • Kang HJ, Koichi U, Harumi F (2007) Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii. Extremophiles 11:251–256

    Article  CAS  PubMed  Google Scholar 

  • King A, Zoia L, Filpponen I (2009) In situ determination of lignin phenolics and wood solubility in imidazolium chlorides using (31)P NMR. J Agric Food Chem 57:8236–8243

    Article  CAS  PubMed  Google Scholar 

  • Klass DL, Ghosh S (1981) Methane production by anaerobic digestion of water hyacinth (Eichhornia crassipes). Fuel Chem 25:41

    Google Scholar 

  • Ko KC, Lee JH, Han Y, Choi JH, Song JJ (2013) A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem Bioph Res Co 441:567–572

    Article  CAS  Google Scholar 

  • Kumar AK, Parikh BS (2015) Cellulose-degrading enzymes from Aspergillus terreus D34 and enzymatic saccharification of mild-alkali and dilute-acid pretreated lignocellulosic biomass residues. Bioresour Bioprocess 2(1):1–13

    Google Scholar 

  • Kumar A, Singh LK, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipites. Bioresour Technol 100:3293–3297

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Liu X, Zhou Y, Guan L, He J, Huang W (2016) A novel pH-stable, endoglucanase (JqCel5A) isolatedfrom a salt-lake microorganism, Jonesia quinghaiensis. Electron J Biotechnol 24:56–62

    Article  Google Scholar 

  • Liu D, Zhang R, Yang X, Hong SW, Da BX, Zhu T, Qi RS (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegradation 65:717–725

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, Van ZWH, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbio Mol Biol Res 66:506–577

    Article  CAS  Google Scholar 

  • Ma FY, Yang N, Xu CY, Yu HB, Wu JG, Zhang XY (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama H, Kawasaki K, Yumoto I, Shida O (1999) Microbacterium kitamiense sp nov a new polysaccharide-producing bacterium isolated from the waste-water of a sugar-beet factory. Int J Syst Bacteriol 49:1353–1357

    Article  PubMed  Google Scholar 

  • Mayo AW, Hanai EE (2017) Modeling phytoremediation of nitrogen-polluted water using water hyacinth (Eichhornia crassipes). Phys Chem Earth 100:170–180

    Article  Google Scholar 

  • Medronho B, Romano A, Maria GM, Lars S, Björn L (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Meneses C, Silva B, Medeiros B, Serrato R, Johnston-Monje D (2016) A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues. Molecules 21:831

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morteza M, Mehdi FS, Kaveh K, Shohreh A, Ghasem HS (2020a) A novel thermostable cellulase cocktail enhances lignocellulosic bioconversion and biorefining in a broad range of pH. Int J Biol Macromol 154:349–360

    Article  CAS  Google Scholar 

  • Morteza MA, Mehdi FSB, Kaveh KB, Shohreh AA, Ghasem HSAC (2020b) A novel thermostable cellulase cocktail enhances lignocellulosic bioconversion and biorefining in a broad range of pH. Int J Biol Macromol 154:349–360

    Article  CAS  Google Scholar 

  • Nigam JN (2002) Bioconversion of water-hyacinth (Eichhorniacrassipes) hemicellulose acid hydrolysate to motor fuel ethanolby xylose-fermenting yeast. J Biotechnol 97:107–116

    Article  CAS  PubMed  Google Scholar 

  • Nimchua T, Thongaram T, Uengwetwanit T, Somchai P, Lily E (2012) Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J Microbiol Biotechnol 22:462–469

    Article  CAS  PubMed  Google Scholar 

  • Norde W, Favier JP (1992) Structure of adsorbed and desorbed proteins. Colloids Surf A Physicochem Eng Asp 64(1):87–93

    CAS  Google Scholar 

  • Okada G (1976) Enzymatic studies on a cellulase system of Trichoderma viride IV Purification and properties of a less-random type cellulase. J Biochem 80:913–922

    Article  CAS  PubMed  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Taggar MS, Kalia A (2020) Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00628-x

  • Raj K, Krishnan C (2018) High sugar yields from sugarcane (Saccharum officinarum) bagasse using low-temperature aqueous ammonia pretreatment and laccase-mediator assisted enzymatic hydrolysis. Ind Crop Prod 111:673–683

    Article  CAS  Google Scholar 

  • Rajesh D, Anil D, Sakshi (2014) Bioconversion of water hyacinth to ethanol by using cellulase from Trichoderma atroviride AD-130. Adv Mater Res 3135:145–148

    Google Scholar 

  • Salinas A, Vega M, María EL, Alejandro G, Rene C, Oriana S (2011) Cloning of novel cellulases from cellulolytic fungi: heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris. Enzym Microb Technol 49:485–491

    Article  CAS  Google Scholar 

  • Samkelo M, Shaunita HR, Willem HZ, Brett IP (2020) Enzymatic hydrolysis of softwood derived paper sludge by an in vitro recombinant cellulase cocktail for the production of fermentable sugars. Catalysts 10:775–792

    Article  CAS  Google Scholar 

  • Sandipan B, Tushar KM, Raj NR (2020) Production, purification, and characterization of cellulase from Acinetobacter junii GAC 16.2, a novel cellulolytic gut isolate of Gryllotalpa africana , and its effects on cotton fiber and sawdust. Ann Microbiol 70(1):853–866

    Google Scholar 

  • Santos YQD, Veras BOD, Jácomede FAF, Gorlach-Lira K, Elizeu ADS (2018) A new salt-tolerant thermostable cellulase from a marine Bacillus sp strain. J Microbiol Biothechnol 28(7):1078–1085

    Article  CAS  Google Scholar 

  • Schmitz A (2004) Metagenomics--the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  PubMed  CAS  Google Scholar 

  • Schrempf H (2013) Actinobacteria within soils: capacities for mutualism, symbiosis and pathogenesis. FEMS Microbiol Lett 342:77–78

    Article  CAS  PubMed  Google Scholar 

  • Sumrith N, Dangtungee R (2019) Mechanical properties of water hyacinth fiber reinforced bio-based epoxy composite. Fibers 4829:7–11

    Google Scholar 

  • Tang LL, Wang XM, Wu XL, Huang Q, Li H (2018) Screening, cloning and characterization of a novel β-Glucosidase from soil metagenomic library. FoodSci 39:118–124

    Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43(4):777–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirawongsaroj P, Sriprang R, Harnpicharnchai P, Taksawan T, Verawat C, Sutipa T, Kusol P, Lily E (2008) Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. J Biotechnol 133:42–49

    Article  CAS  PubMed  Google Scholar 

  • Tong Z, Ruifeng L, Jinyuan S, Yinglu C, Bian W (2020) Characterization and efficient production of a thermostable, halostable and organic solvent-stable cellulase from an oil reservoir. Int J Biol Macromol 159:622–629

    Article  CAS  Google Scholar 

  • Valérie D, Mirjam C, Anne B, Christian G, Henri-Pierre F, Jean-Pierre B, Gideon JD, Richard HC (1995) Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3:939–949

    Article  Google Scholar 

  • Wang C, Dong D, Wang H, Müller K, Qin Y, Wang H, Wu W (2016) Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol Biofuels 9(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiaolin Z, Yongzhen T, Meilu J, Yide L, Gang L (2020) Characterization and purification via nucleic acid aptamers of a novel esterase from the metagenome of paper mill wastewater sediments. Int J Biol Macromol 153:441–450

    Article  CAS  Google Scholar 

  • Yuan YL, Zhi YW, Ya TZ, Guo PZ, Ling L (2019) Enzymatic identification and functional sites study of a novel cold-active cellulase (MkCel5) from Microbacterium kitamiensea. Biotechnol Biotec Equip 33:739–747

    Article  CAS  Google Scholar 

  • Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng F, Tu T, Wang XYY, Ma R, Su XXM, Yao B, Luo HY (2018) Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 90073 by site-directed mutagenesis on loop 6. Biotechnol Biofuels 11:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou JZ, Bruns MA, Tiejie JM (1996) DNA recovery from soils of diverse com position. Appl Environ Microbial 62:316–322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Guangzhou Basic Clean Cosmetics Manufacturing Co. Ltd.

Availability of data and material

Not applicable

Code availability

Not applicable

Funding

This research has been funded by Natural Science Foundation of China (31400680), Science and Technology Plan Project of Guangzhou (201802030009), the Innovation and Strengthening School Project from Guangdong Pharmaceutical University (2016KTSCX067 and 2016SFKC_28), Science and Technology Plan Project of Guangdong Province (2017A010105011, 2014A020208134, 2014A020212602), and Education Project of Guangdong Province (2013KJCX0107).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, X.S.Z.; methodology, J.Y.; software, Z.J.D.; validation, X.S.Z., S.L., and J.Y.; formal analysis, X.S.Z.; investigation, Z.J.D.; resources, Z.J.D.; data curation, X.X.; writing—original draft preparation, X.S.Z.; writing—review and editing, L.Y.L.; visualization, X.X.; supervision, H.L.; project administration, H.L.; funding acquisition, S.L.. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to He Li.

Ethics declarations

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, L., Deng, Z. et al. Screening, cloning, enzymatic properties of a novel thermostable cellulase enzyme, and its potential application on water hyacinth utilization. Int Microbiol 24, 337–349 (2021). https://doi.org/10.1007/s10123-021-00170-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-021-00170-4

Keywords

Navigation