Skip to main content
Log in

Purification, characterization, and anticancer and antioxidant activities of l-glutaminase from Aspergillus versicolor Faesay4

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

l-Glutaminase is an amidohydrolase which can act as a vital chemotherapeutic agent against various malignancies. In the present work, l-glutaminase productivity from Aspergillus versicolor Faesay4 was significantly increased by 7.72-fold (from 12.33 ± 0.47 to 95.15 ± 0.89 U/mL) by optimizing submerged fermentation parameters in Czapek’s Dox (CZD) medium including an incubation period from 3 (12.33 ± 0.47 U/mL) to 6 days (23.36 ± 0.58 U/mL), an incubation temperature from 30 °C (23.36 ± 0.49 U/mL) to 25 °C (31.08 ± 0.60 U/mL), initial pH from pH 5.0 (8.49 ± 0.21 U/mL)  to pH 7.0 (32.18 ± 0.57 U/mL), replacement of glucose (30.19 ± 0.52 U/mL) by sucrose (48.97 ± 0.67 U/mL) as the carbon source at a concentration of 2.0% (w/v), increasing glutamine concentration as the nitrogen source from 1.0% (w/v, 48.54 ± 0.48 U/mL) to 1.5% (w/v, 63.01 ± 0.60 U/mL), and addition of a mixture of KH2PO4 and NaCl (0.5% w/v for both) to SZD as the metal supplementation (95.15 ± 0.89 U/mL). Faesay4 l-glutaminase was purified to yield total activity 13,160 ± 22.76 (U), specific activity 398.79 ± 9.81 (U/mg of protein), and purification fold 2.1 ± 3.18 with final enzyme recovery 57.22 ± 2.17%. The pure enzyme showed a molecular weight of 61.80 kDa, and it was stable and retained 100.0% of its activity at a temperature ranged from 10 to 40 °C and pH 7.0. In our trials, to increase the enzyme activity by optimizing the assay conditions (which were temperature 60 °C, pH 7.0, substrate glutamine, substrate concentration 1.0%, and reaction time 60 min), the enzyme activity increased by 358.8% after changing the assay temperature from 60 to 30 °C and then increased by 138% after decreasing the reaction time from 60 to 40 min. However, both pH 7.0 and glutamine as the substrate remain the best assay parameters for the l-glutaminase activity. When the glutamine in the assay as the reaction substrate was replaced by asparagine, lysine, proline, methionine, cysteine, glycine, valine, phenylalanine, l-alanine, aspartic acid, tyrosine, and serine, the enzyme lost 23.86%, 29.0%, 31.0%, 48.3%, 50.0%, 73.6%, 74.51%, 80.42%, 82.5%, 83.43%, 88.36%, and 89.78% of its activity with glutamine, respectively. Furthermore, Mn2+, K+, Na+, and Fe3+ were enzymatic activators that increased the l-glutaminase activity by 25.0%, 18.05%, 10.97%, and 8.0%, respectively. Faesay4 l-glutaminase was characterized as a serine protease enzyme as a result of complete inhibition by all serine protease inhibitors (PMSF, benzamidine, and TLCK). Purified l-glutaminase isolated from Aspergillus versicolor Faesay4 showed potent DPPH scavenging activities with IC50 = 50 μg/mL and anticancer activities against human liver (HepG-2), colon (HCT-116), breast (MCF-7), lung (A-549), and cervical (Hela) cancer cell lines with IC50 39.61, 12.8, 6.18, 11.48, and 7.25 μg/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Tahon MA, Isaac GS (2019) Purification, characterization and anticancer efficiency of L-glutaminase from Aspergillus flavus. J Gen Appl Microbiol 65:284–292

    Article  CAS  PubMed  Google Scholar 

  • Amobonye A, Singh S, Pillai S (2019) Recent advances in microbial glutaminase production and applications-a concise review. Crit Rev Biotechnol 39(7):944–963

    Article  CAS  PubMed  Google Scholar 

  • Diba K, Rezaie S, Mahmoudi M, Kordbacheh P, Diba CK (2007) Identification of Aspergillus species using morphological characteristics. Pak J Med Sci 23:867–872

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic Press Ltd, London, pp viii + 860pp

  • El-Bondkly AMA (2006) Gene transfer between different Trichoderma species and Aspergillus niger through intergeneric protoplast fusion to convert ground rice straw to citric acid and cellulases. Appl Biochem Biotechnol 135(2):117–132

    Article  CAS  PubMed  Google Scholar 

  • El-Bondkly AMA (2012) Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucose tolerance and xylanase activity of marine-derived fungus, Aspergillus sp. NRCF5. Appl Biochem Biotechnol 167:2160–2173

    Article  CAS  PubMed  Google Scholar 

  • El-Bondkly AMA, El-Gendy MMA (2012) Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol. Antonie Van Leeuwenhoek 101:331–346

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy MMAA, Taher MT, Nageh FA, Fareed HSM (2016) Process optimization of L-glutaminase production; a tumour inhibitor from marine endophytic isolate Aspergillus sp. ALAA-2000. Int J PharmTech Res 9(8):256–267

    CAS  Google Scholar 

  • El-Gendy MMAA, Al-Zahrani SHM, El-Bondkly AMA (2017) Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Appl Biochem Biotechnol 183:30–50

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy MMAA, Yahya SMM, Hamed AR, Soltan MM, El-Bondkly AMA (2018) Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from Red Sea sponge Hyrtios erectus. Appl Biochem Biotechnol 185:755–777

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed ASA (2009) L-Glutaminase production by Trichoderma koningii under solid-state fermentation. Indian J Microbiol 49:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  • Fraga ME, Santana DMN, Gatti MJ, Direito GM, Cavaglieri LR, Rosa CAR (2008) Characterization of Aspergillus species based on fatty acid profiles. Mem Inst Oswaldo Cruz Rio de Janeiro 103(6):540–544

    Article  Google Scholar 

  • Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamed SR, Al-wasify RS (2016) Production and optimization of L-glutaminase from a terrestrial fungal Fusarium oxysporum. Int J PharmTech Res 9(4):233–241

    CAS  Google Scholar 

  • Hemalatha V, Kalyani P, Chandana VK, Hemalatha KPJ (2018) Isolation and identification of L-glutaminase producing fungi from agricultural soil. Inter J Curr Adv Res 07(12):16712–16717

    Google Scholar 

  • Hiyagh EM, Ravasan SM, Darvishi F, Mokhtarzadeh A, Baradaran B (2019) Anti-cancer effect of L-glutaminase on acute lymphoblastic leukemia (Raji), breast cancer (MCF7) and colorectal cancer (A549) cell lines. Biochem Mol biol J 5:54

  • Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of microorganisms. J Gen Microbiol 76:85–99

    Article  CAS  PubMed  Google Scholar 

  • Khalil MS, Moubasher MH, El-Zawahry MM, Miche MM (2020) Evaluation of antitumor activity of fungal L-glutaminase produced by Egyptian isolates. Lett Appl NanoBioSci 9(1):924–930

    Article  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. CBS, Netherlands

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • López de la Oliva AR, Campos-Sandoval JA, Gómez-García MC, Cardona C, Martín-Rufián M, Sialana FJ, Castilla L, Bae N, Lobo C, Peñalver A, García-Frutos M, Carro D, Enrique V, Paz JC, Mirmira RG, Gutiérrez A, Alonso FJ, Segura JA, Matés JM, Lubec G, Márquez J (2020) Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation. Sci Rep 10:2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  • Masisi BK, El Ansari R, Alfarsi L, Rakha EA, Green AR, Craze ML (2020) The role of glutaminase in cancer. Histopathology 76(4):498–508

    Article  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nanjundaswamy A, Okeke BC (2020) Comprehensive optimization of culture conditions for production of biomass-hydrolyzing enzymes of Trichoderma SG2 in submerged and solid-state fermentation. Appl Biochem Biotechnol 191:444–462

    Article  CAS  PubMed  Google Scholar 

  • Nemec T, Jernec K, Cimerman A (1997) Sterols and fatty acids of different Aspergillus species. FEMS Microbiol Lett 149:201–205

    Article  CAS  Google Scholar 

  • Olarewaju MO, Nzelibe HC (2019) Statistical optimization of L–glutaminase production by Trichoderma species under solid state fermentation using African locust beans as substrate. Afr J Biochem Res 13(6):73–81

    Article  CAS  Google Scholar 

  • Raczka AM, Reynolds PA (2019) Glutaminase inhibition in renal cell carcinoma therapy. Cancer Drug Resist 2:356–364

    Google Scholar 

  • Rani SA, Lalitha S, Pravesh BV (2011) In vitro antioxidant and anti-cancer activity of L-asparaginase from Aspergillus flavus (KUFS 20). Asian J Pharm Clin Res 4(2):174–177

    CAS  Google Scholar 

  • Raper KB, Fennell DI (1973) The genus Aspergillus. Robert E. Krieger, New York, p 686

    Google Scholar 

  • Ren L, Ruiz-Rodado V, Dowdy T, Huang S, Issaq SH, Beck J, Wang H, Tran Hoang C, Lita A, Larion M, LeBlanc AK (2020) Glutaminase-1 (GLS1) inhibition limits metastatic progression in osteosarcoma. Cancer Metab 8:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues P, Soares C, Kozakiewicz Z, Paterson RRM, Lima N (2007) Identification and characterization of Aspergillus flavus and aflatoxins. In: Méndez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. FORMATEX, Badajoz, pp 527–534

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • Sajitha N, Vasuki S, Suja M (2014) Antibacterial and antioxidant activities of L-glutaminase from seaweed endophytic fungi Penicillium citrinum. World J Pharm Pharm Sci 3(4):682–695

    Google Scholar 

  • Stahl PD, Klug MJ (1996) Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62(11):4136–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighborjoining method. Proc Natl Acad Sci 101(30):11030–11035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang R, Sun-Waterhouse D, Xiong J, Cui C, Wang W (2020) Feasibility of synthesizing γ-[Glu](n≥1)-Gln using high solid concentrations and glutaminase from Bacillus amyloliquefaciens as the catalyst. Food Chem 310:125920

    Article  CAS  PubMed  Google Scholar 

  • Unissa R, Sudhakar M, Reddy ASK, Sravanthi KN (2014) A review on biochemical and therapeutic aspects of glutaminase. Int J Pharm Sci Res (IJPSR) 5(11):4617–4634

    Google Scholar 

  • Vo TD, Sulaiman C, Tafazoli S, Lynch B, Roberts A, Chikamatsu G (2020) Safety assessment of glutaminase from Aspergillus niger. Food Sci Nutr 8:1433–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warcup J (1950) The soil-plate method for isolation of fungi from soil. Nature 166:117–118

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to Taif University, Saudi Arabia for funding this work through Taif University Researchers Supporting Project.

Funding

The current work was funded by Taif University Researchers Supporting Project number TURSP-2020/111, Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esraa Ahmed Mohamed El-Bondkly.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, M.F., El-Shenawy, F.S., El-Gendy, M.M.A.A. et al. Purification, characterization, and anticancer and antioxidant activities of l-glutaminase from Aspergillus versicolor Faesay4. Int Microbiol 24, 169–181 (2021). https://doi.org/10.1007/s10123-020-00156-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-020-00156-8

Keywords

Navigation