Skip to main content
Log in

Effect of Carboxymethyl Cellulose (CMC) Functionalization on Dispersion, Mechanical, and Corrosion Properties of CNT/Epoxy Nanocomposites

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Carbon nanotube (CNT)/epoxy nanocomposites have a great potential of possessing many advanced properties. However, the homogenization of CNT dispersion is still a great challenge in the research field of nanocomposites. This study applied a novel dispersion agent, carboxymethyl cellulose (CMC), to functionalize CNTs and improve CNT dispersion in epoxy. The effectiveness of the CMC functionalization was compared with mechanical mixing and a commonly used surfactant, sodium dodecylbenzene sulfonate (NaDDBS), regarding dispersion, mechanical and corrosion properties of CNT/epoxy nanocomposites with three different CNT concentrations (0.1%, 0.3% and 0.5%). The experimental results of Raman spectroscopy, particle size analysis and transmission electron microscopy showed that CMC functionalized CNTs reduced CNT cluster sizes more efficiently than NaDDBS functionalized and mechanically mixed CNTs, indicating a better CNT dispersion. The peak particle size of CMC functionalized CNTs reduced as much as 54% (0.1% CNT concentration) and 16% (0.3% CNT concentration), compared to mechanical mixed and NaDDBS functionalized CNTs. Because of the better dispersion, it was found by compressive tests that CNT/epoxy nanocomposites with CMC functionalization resulted in 189% and 66% higher compressive strength, 224% and 50% higher modulus of elasticity than those with mechanical mixing and NaDDBS functionalization respectively (0.1% CNT cencentration). In addition, electrochemical corrosion tests also showed that CNT/epoxy nanocomposites with CMC functionalization achieved lowest corrosion rate (0.214 mpy), the highest corrosion resistance (201.031 Ω·cm2), and the lowest porosity density (0.011%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, D.; Malakooti, S.; Kulkarni, V. N.; Ren Y.; Lu H. Nanoindentation measurement of core-skin interphase viscoelastic properties in a sandwich glass composite. Mech. Time-depend. Mater. 2021, 25, 353–363.

    Article  CAS  Google Scholar 

  2. Cao, D.; Malakooti, S.; Kulkarni, V.N.; Ren Y.; Liu, Y.; Nie X.; Qian, D.; Griffith, D.T.; Lu, H. The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 2021, 25, 71–93.

    Article  Google Scholar 

  3. Wang, X.; Xu, T.; Andrade, M.J.; Rampalli, I.; Cao, D.; Haque, M.; Roy, S.; Baughman, R.H.; Lu, H. The infterfacial shear strength of carbon nanotube sheet modified carbon fiber composites. Chall. Mech. Time-depend. Mater. 2021, 2, 25–32.

    Google Scholar 

  4. Adams, R.D.; Peppiatt, N. A. Stress analysis of adhesive-bonded lap joints. J. Strain Anal. Eng. Des. 1974, 9, 185–196.

    Article  Google Scholar 

  5. Zhang, D.; Huang, Y. Influence of surface roughness and bondline thickness on the bonding performance of epoxy adhesive joints on mild steel substrates. Prog. Org. Coatings 2021, 153, 106135.

    Article  CAS  Google Scholar 

  6. Fu, Y.X.; He, Z.X.; Mo, D.C.; Lu, S.S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014, 66, 493–498.

    Article  CAS  Google Scholar 

  7. Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. An overview of multifunctional epoxy nanocomposites. J. Mater. Chem. C. 2016, 4, 5890–5906.

    Article  CAS  Google Scholar 

  8. Dong, M.; Zhang, H.; Tzounis, L.; Santagiuliana, G.; Bilotti, E.; Papageorgiou, D. G. Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: a review. Carbon N. Y. 2021, 185, 57–81.

    Article  CAS  Google Scholar 

  9. Kumar, S.K.; Castro, M.; Saiter, A.; Delbreilh, L.; Feller, J. F.; Thomas, S.; Grohens, Y. Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications. Mater. Lett. 2013, 96, 109–112.

    Article  CAS  Google Scholar 

  10. Nigam, V.; Setua, D. K.; Mathur, G. N. Failure analysis of rubber toughened epoxy resin. J. Appl. Polym. Sci. 2002, 87, 861–868.

    Article  Google Scholar 

  11. Sydlik, S. A.; Lee, J. H.; Walish, J. J.; Thomas, E. L.; Swager, T. M. Epoxy functionalized multi-walled carbon nanotubes for improved adhesives. Carbon N. Y. 2013, 59, 109–120.

    Article  CAS  Google Scholar 

  12. Wang, Z. Y.; Sun, X.; Wang, Y.; Liu, J. D.; Zhang, C.; Zhao, Z. B.; Du, X. Y. Fabrication of high-performance thermally conductive and electrically insulating polymer composites with siloxane/multi-walled carbon nanotube core-shell hybrids at low filler content. Polymer 2022, 262, 125430.

    Article  CAS  Google Scholar 

  13. Zhang, D.; Huang, Y. The bonding performances of carbon nanotube (CNT)-reinforced epoxy adhesively bonded joints on steel substrates. Prog. Org. Coatings 2021, 159, 106407.

    Article  CAS  Google Scholar 

  14. Singh, N. P.; Gupta, V. K.; Singh, A. P. Graphene and carbon nanotube reinforced epoxy nanocomposites: a review. Polymer 2019, 180, 121724.

    Article  CAS  Google Scholar 

  15. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  16. Kil, T.; Jin, D. W.; Yang, B.; Lee, H. K. A comprehensive micromechanical and experimental study of the electrical conductivity of polymeric composites incorporating carbon nanotube and carbon fiber. Compos. Struct. 2021, 268, 114002.

    Article  CAS  Google Scholar 

  17. Guo, Y.K.; Li, H.; Zhao, P.X.; Wang, X.F.; Astruc, D.; Shuai, M. Thermo-reversible MWCNTs/epoxy polymer for use in self-healing and recyclable epoxy adhesive. Chinese J. Polym. Sci. 2017, 35, 728–738.

    Article  CAS  Google Scholar 

  18. Zhang, D.; Huang, Y.; Chia, L. Effects of carbon nanotube (CNT) geometries on the dispersion characterizations and adhesion properties of CNT reinforced epoxy composites. Compos. Struct. 2022, 296, 115942.

    Article  CAS  Google Scholar 

  19. Parveen, S.; Rana, S.; Fangueiro, R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater. 2013, 2013, 710175.

    Article  Google Scholar 

  20. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.

    Article  CAS  PubMed  Google Scholar 

  21. Gao, E.; Lu, W.; Xu, Z. Strength loss of carbon nanotube fibers explained in a three-level hierarchical model. Carbon N. Y. 2018, 138, 134–142.

    Article  CAS  Google Scholar 

  22. Zhang, D.; Huang, Y.; Wang, Y. Bonding performances of epoxy coatings reinforced by carbon nanotubes (CNTs) on mild steel substrate with different surface roughness. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106479.

    Article  CAS  Google Scholar 

  23. Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367.

    Article  Google Scholar 

  24. Yu, Z.; Di, H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.; He, Y. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl. Surf. Sci. 2015, 351, 986–996.

    Article  CAS  Google Scholar 

  25. Rennhofer, H.; Zanghellini, B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: a review. Nanomaterials 2021, 11, 1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403.

    Article  CAS  Google Scholar 

  27. Yang, H.; Yang, Y.; Liu, Y.; He, D.; Bai, J. Multi-scale study of CNT and CNT-COOH reinforced epoxy composites: dispersion state, interfacial interaction vs mechanical properties. Compos. Interfaces 2021, 28, 381–393.

    Article  CAS  Google Scholar 

  28. Korayem, A.H.; Barati, M.R.; Chen, S.J.; Simon, G.P.; Zhao, X.L.; Duan, W.H. Optimizing the degree of carbon nanotube dispersion in a solvent for producing reinforced epoxy matrices. Powder Technol. 2015, 284, 541–550.

    Article  CAS  Google Scholar 

  29. Dassios, K. G.; Alafogianni, P.; Antiohos, S. K.; Leptokaridis, C.; Barkoula, N. M.; Matikas, T. E. Optimization of sonication parameters for homogeneous surfactant assisted dispersion of multiwalled carbon nanotubes in aqueous solutions. J. Phys. Chem. C. 2015, 119, 7506–7516.

    Article  CAS  Google Scholar 

  30. Jia, X. L.; Zhang, Q.; Huang, J. Q.; Zheng, C.; Qian, W. Z.; Wei, F. The direct dispersion of granular agglomerated carbon nanotubes in bismaleimide by high pressure homogenization for the production of strong composites. Powder Technol. 2012, 217, 477–481.

    Article  CAS  Google Scholar 

  31. Shokrieh, M.M.; Rafiee, R. Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos. Struct. 2010, 92, 2415–2420.

    Article  Google Scholar 

  32. Haque, A.; Ramasetty, A. Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 2005, 71, 68–77.

    Article  Google Scholar 

  33. Park, K.C.; Hayashi, T.; Tomiyasu, H.; Endo, M.; Dresselhaus, M.S. Progressive and invasive functionalization of carbon nanotube sidewalls by diluted nitric acid under supercritical conditions. J. Mater. Chem. 2005, 15, 407–411.

    Article  CAS  Google Scholar 

  34. Gabriel, G.; Sauthier, G.; Fraxedas, J.; Moreno-Mañas, M.; Martínez, M.T.; Miravitlles, C.; Casabó, J. Preparation and characterisation of single-walled carbon nanotubes functionalised with amines. Carbon N. Y. 2006, 44, 1891–1897.

    Article  CAS  Google Scholar 

  35. Ma, P. C.; Kim, J. K.; Tang, B. Z. Functionalization of carbon nanotubes using a silane coupling agent. Carbon N. Y. 2006, 44, 3232–3238.

    Article  CAS  Google Scholar 

  36. Han, B.; Yu, X. Effect of surfactants on pressure-sensitivity of CNT filled cement mortar composites. Front. Mater. 2014, 1, 1–5.

    Article  CAS  Google Scholar 

  37. Carilli, C. L.; Lewis, G. F.; Djorgovski, S. G.; Mahabal, A.; Cox, P.; Bertoldi, F.; Omont, A. A molecular Einstein ring: Imaging a starburst disk surrounding a quasi-stellar object. Science 2003, 300, 773–775.

    Article  CAS  PubMed  Google Scholar 

  38. Imtiaz, S.; Siddiq, M.; Kausar, A.; Muntha, S.T.; Ambreen, J.; Bibi, I. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites. Chinese J. Polym. Sci. 2018, 36, 445–461.

    Article  CAS  Google Scholar 

  39. Chen, Y.; Wei, W.; Zhu, Y.; Luo, J.; Liu, X. Noncovalent functionalization of carbon nanotubes via co-deposition of tannic acid and polyethyleneimine for reinforcement and conductivity improvement in epoxy composite. Compos. Sci. Technol. 2019, 170, 25–33.

    Article  CAS  Google Scholar 

  40. Qi, Z.; Tan, Y.; Wang, H.; Xu, T.; Wang, L.; Xiao, C. Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites. Polym. Test. 2017, 64, 38–47.

    Article  CAS  Google Scholar 

  41. Monthioux, M.; Smith, B. W.; Burteaux, B.; Claye, A.; Fischer, J. E.; Luzzi, D. E. Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon N. Y. 2001, 39, 1251–1272.

    Article  CAS  Google Scholar 

  42. Cha, J.; Jin, S.; Shim, J. H.; Park, C. S.; Ryu, H. J.; Hong, S. H. Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater. Des. 2016, 95, 1–8.

    Article  CAS  Google Scholar 

  43. Chen, B.; Chen, J.; Li, J. Y.; Tong, X.; Zhao, H. C.; Wang, L. P. Oligoaniline assisted dispersion of carbon nanotubes in epoxy matrix for achieving the nanocomposites with enhanced mechanical, thermal and tribological properties. Chinese J. Polym. Sci. 2017, 35, 446–454.

    Article  CAS  Google Scholar 

  44. Rahman, M. S.; Hasan, M. S.; Nitai, A. S.; Nam, S.; Karmakar, A. K.; Ahsan, M. S.; Shiddiky, M. J. A.; Ahmed, M. B. Recent developments of carboxymethyl cellulose. Polymers 2021, 13, 1345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minami, N.; Kim, Y.; Miyashita, K.; Kazaoui, S. Nalini, B. Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy. Appl. Phys. Lett. 2006, 88, 093123.

    Article  Google Scholar 

  46. Zhang, D.; Huang, Y. Dispersion characterizations and adhesion properties of epoxy composites reinforced by carboxymethyl cellulose surface treated carbon nanotubes. Powder Technol. 2022, 404, 117505.

    Article  CAS  Google Scholar 

  47. Chia, L.; Huang, Y.; Lu, P.; Bezbaruah, A. N. Surface modification of carbon nanotubes using carboxymethyl cellulose for enhanced stress sensing in smart cementitious composites. IEEE Sens. J. 2021, 21, 15218–15229.

    Article  CAS  Google Scholar 

  48. Creus U, J.; Mazille, H.; Idrissi, H. Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf. Coat. Technol. 2000, 130, 224–232.

    Article  CAS  Google Scholar 

  49. Ranganatha, S.; Venkatesha, T. V.; Vathsala, K. Development of electroless Ni-Zn-P/nano-TiO2 composite coatings and their properties. Appl. Surf. Sci. 2010, 256, 7377–7383.

    Article  CAS  Google Scholar 

  50. Mazaheri, H.; Allahkaram, S. R. Deposition, characterization and electrochemical evaluation of Ni-P-nano diamond composite coatings. Appl. Surf. Sci. 2012, 258, 4574–4580.

    Article  CAS  Google Scholar 

  51. Pizzutto, C. E.; Suave, J.; Bertholdi, J.; Pezzin, S. H.; Coelho, L. A. F.; Amico, S. C. Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Mater. Res. 2011, 14, 256–263.

    Article  CAS  Google Scholar 

  52. Jojibabu, P.; Zhang, Y. X.; Rider, A. N.; Wang, J.; Gangadhara Prusty, B. Synergetic effects of carbon nanotubes and triblock copolymer on the lap shear strength of epoxy adhesive joints. Compos. Part B Eng. 2019, 178, 107457.

    Article  CAS  Google Scholar 

  53. Bourchak, M.; Juhany, K. A.; Salah, N.; Ajaj, R.; Algarni, A.; Scarpa, F. Determining the tensile properties and dispersion characterization of CNTs in epoxy using Tem and Raman spectroscopy. Mech. Compos. Mater. 2020, 56, 215–226.

    Article  CAS  Google Scholar 

  54. Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102.

    Article  CAS  Google Scholar 

  55. Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv. 2016, 6, 109916–109935.

    Article  CAS  Google Scholar 

  56. Cha, J.; Jun, G. H.; Park, J. K.; Kim, J. C.; Ryu, H. J.; Hong, S. H. Improvement of modulus, strength and fracture toughness of CNT/Epoxy nanocomposites through the functionalization of carbon nanotubes. Compos. Part B Eng. 2017, 129, 169–179.

    Article  CAS  Google Scholar 

  57. Shokrian, M. D.; Shelesh-Nezhad, K.; Najjar, R. Effect of CNT dispersion methods on the strength and fracture mechanism of interface in epoxy adhesive/Al joints. J. Adhes. Sci. Technol. 2019, 33, 1394–1409.

    Article  CAS  Google Scholar 

  58. Chen, X.; Beyerlein, I. J.; Brinson, L. C. Curved-fiber pull-out model for nanocomposites. Part 1: bonded stage formulation. Mech. Mater. 2009, 41, 279–292.

    Article  Google Scholar 

  59. Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corros. Sci. 2018, 137, 111–126.

    Article  CAS  Google Scholar 

  60. Jeon, H. R.; Park, J. H.; Shon, M. Y. Corrosion protection by epoxy coating containing multi-walled carbon nanotubes. J. Ind. Eng. Chem. 2013, 19, 849–853.

    Article  CAS  Google Scholar 

  61. Moradi, M. H.; Aliofkhazraei, M.; Toorani, M.; Golgoon, A.; Rouhaghdam, A. S. SiAlON-epoxy nanocomposite coatings: corrosion and wear behavior. J. Appl. Polym. Sci. 2016, 133, 43855.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation (No. CMMI-1750316). The findings and opinions expressed in this study are those of the authors only and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Additional information

Conflict of Interests

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DW., Chia, L. & Huang, Y. Effect of Carboxymethyl Cellulose (CMC) Functionalization on Dispersion, Mechanical, and Corrosion Properties of CNT/Epoxy Nanocomposites. Chin J Polym Sci 41, 1277–1286 (2023). https://doi.org/10.1007/s10118-023-2928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2928-0

Keywords

Navigation