Skip to main content
Log in

Improving Damping Properties and Thermal Stability of Epoxy/Polyurethane Grafted Copolymer by Adding Glycidyl POSS

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Modified castor oil-based epoxy resin (EP)/polyurethane (PU) grafted copolymer by glycidyl polyhedral oligomeric silsesquioxane (glycidyl POSS) was synthesized. The damping properties, thermal stability, mechanical properties and morphology of the grafted copolymer modified by glycidyl POSS were studied systematically. The results revealed that the incorporation of glycidyl POSS improved the damping performance evidently and broadened damping temperature range, especially when the glycidyl POSS content was 0.2%–1%. At the same time, there was a slight increase in thermal stability with the increase of POSS content. The tensile properties changed with the change of the copolymer’s Tg, decreased at low POSS contents and increased at high POSS contents. This modified copolymer has the potential to be used as film damping material or constrained damping layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moreira, R.; Rodrigues, J. D. Constrained damping layer treatments: Finite element modeling. Modal. Anal. 2004, 10(4), 575–595

    Article  Google Scholar 

  2. Johnson, C. D.; Kienholzm, D. A. Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA. J. 1982, 20(9), 1284–1290

    Article  Google Scholar 

  3. Remillat C. Damping mechanism of polymers filled with elastic particles. Mech. Mater. 2007, 39(6), 525–537

    Article  Google Scholar 

  4. Sperling L. H.; Hu. R. Interpenetrating polymer networks, Polymer Blends Handbook. Springer. Netherlands. 2014, 677–724

    Google Scholar 

  5. Merlin D. L.; Sivasankar. B. Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 2009, 45(1), 165–170

    Article  CAS  Google Scholar 

  6. Cristea, M.; Bruma, M.; Ibanescu, S.; Cascaval, C. N.; Rosu, D. Dynamic mechanical analysis of polyurethane-epoxy interpenetrating polymer networks. High Perform. Polym. 2009, 21(5), 608–623

    Article  CAS  Google Scholar 

  7. Chen, S.; Wang, Q.; Pei, X.; Wang, T. Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J. Appl. Polym. Sci. 2010, 118(2), 1144–1151

    Article  CAS  Google Scholar 

  8. Suhr, J.; Koratkar, N.; Keblinski, P.; Ajayan, P. Viscoelasticity in carbon nanotube composites. Nat. Mater. 2005, 4(2), 134–137

    Article  CAS  PubMed  Google Scholar 

  9. Chen, S.; Wang, Q.; Wang, T. Damping, thermal, and mechanical properties of carbon nanotubes modified castor oilbased polyurethane/epoxy interpenetrating polymer network composites. Mater. Design 2012, 38, 47–52

    Article  CAS  Google Scholar 

  10. Chen, S.; Wang, Q.; Wang, T. Damping, thermal, and mechanical properties of montmorillonite modified castor oilbased polyurethane/epoxy graft IPN composites. Mater. Chem. Phys. 2011, 130(1-2), 680–684

    Article  CAS  Google Scholar 

  11. Chen, S.; Wang, Q.; Wang, T.; Pei, X. Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater. Design 2011, 32(2), 803–807

    Article  CAS  Google Scholar 

  12. Raftopoulos, K. N.; Pielichowski, K. Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog. Polym. Sci. 2016, 52, 136–187

    Article  CAS  Google Scholar 

  13. Vannier, A.; Duquesne, S.; Bourbigot, S.; Castrovinci, A.; Camino, G.; Delobel, R. The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate). Polym. Degrad. Stab. 2008, 93(4), 818–826

    Article  CAS  Google Scholar 

  14. Huang, X.; Zhi, C.; Jiang, P.; Golberg, D.; Bando, Y.; Tanaka, T. Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv. Funct. Mater. 2013, 23(14), 1824–1831

    Article  CAS  Google Scholar 

  15. Huang, H.; Chen, B.; Wang, Z.; Hung, T. F.; Susha, A. S.; Zhong, H.; Rogach, A. L. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white lightemitting devices. Chem. Sci. 2016, 7(9), 5699–5703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu, J.; Liang, C.; Dang, J.; Dong, W.; Zhang, Q. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride. RSC Adv. 2016, 6(42), 35809–35814

    Article  CAS  Google Scholar 

  17. Bu, Y.; Sun, G.; Zhang, L. POSS-modified PEG adhesives for wound closure. Chinese J. Polym. Sci. 2017, 35(10), 1231–1242

    Article  CAS  Google Scholar 

  18. Schwab, J. J.; Lichtenhan, J. D. Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl. Organomet. Chem. 1998, 12(10-11), 707–713

    Article  CAS  Google Scholar 

  19. Matejka, L.; Strachota, A.; Plestil, J. Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Structure and morphology. Macromolecules 2004, 37(25), 9449–9456

    Article  CAS  Google Scholar 

  20. Zhang, W.; Camino, G.; Yang, R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog. Polym. Sci. 2017, 67, 77–125

    Article  CAS  Google Scholar 

  21. Song, J.; Chen, G.; Wu, G.; Cai, C.; Liu, P.; Li, Q. Thermal and dynamic mechanical properties of epoxy resin/poly(urethaneimide)/polyhedral oligomeric silsesquioxane nanocomposites. Polym. Adv. Technol. 2011, 22(12), 2069–2074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to the National Natural Science Foundation of China for financial support (Nos. 51573102, 51421061, and 51210005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Chen or Qiang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, GL., Han, D., Yuan, Y. et al. Improving Damping Properties and Thermal Stability of Epoxy/Polyurethane Grafted Copolymer by Adding Glycidyl POSS. Chin J Polym Sci 36, 1297–1302 (2018). https://doi.org/10.1007/s10118-018-2145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2145-4

Keywords

Navigation