Skip to main content
Log in

Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution

  • Rapid Communication
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The self-assembly of block copolymer in solution has proven to be an effective strategy for building up a wide range of nanomaterials with diverse structures and applications. This paper reports a facile self-assembly approach towards two-dimensional (2D) sandwich-like mesoporous nitrogen-doped carbon/reduced graphene oxide nanocomposites (denoted as mNC/rGO) with well-defined large mesopores. The strategy involves the synergistic self-assembly of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) spherical micelles, m-phenylenediamine (mPD) monomers and GO in solution and the subsequent carbonization at 900 °C. The resultant mNC/rGO nanosheets have an average pore size of 19 nm, a high specific surface of 812 m2·g–1 and a nitrogen content of 2.2 wt%. As an oxygen reduction reaction (ORR) catalyst, the unique structural features render the metal-free nanosheets excellent electrocatalytic performance. In a 0.1 mol·L–1 KOH alkaline medium, mNC/rGO exhibits a four-electron transfer pathway with a high half-wave-potential (E1/2) of +0.77 V versus reversible hydrogen electrode (RHE) and a limiting current density (JL) of 5.2 mA·cm–2, which are well comparable with those of the commercial Pt/C catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Steele, B. C.; Heinzel, H. A. Materials for fuel-cell technologies. Nature 2001, 414(6861), 345–352.

    Article  CAS  Google Scholar 

  2. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4(3), 1321–1326.

    Article  CAS  Google Scholar 

  3. Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4(4), 1238–1254.

    Article  CAS  Google Scholar 

  4. Liu, J.; Song, P.; Ning, Z. G.; Xu, W. L. Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction. Electrocatalysis 2015, 6(2), 132–147.

    Article  CAS  Google Scholar 

  5. Karunagaran, R.; Tung, T. T.; Shearer, C.; Tran, D.; Coghlan, C.; Doonan, C.; Losic, D. A unique 3D nitrogen-doped carbon composite as high-performance oxygen reduction catalyst. Materials 2017, 10(8), 921.

    Article  Google Scholar 

  6. Cong, K.; Ritter, M.; Stumpf, S.; Schröter, B.; Schubert, U. S.; Ignaszak, A. Metal-free electrocatalyst for oxygen reduction: synthesis-controlled density of catalytic centers and impact on ORR. Electroanalysis 2014, 26(12), 2567–2573.

    Article  CAS  Google Scholar 

  7. Gavrilov, N.; Pašti, I. A.; Mitrić, M.; Travas-Sejdić, J.; Ćirić-Marjanović, G.; Mentus, S. V. Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media. J. Power Sources 2012, 220, 306–316.

    Article  CAS  Google Scholar 

  8. Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6(6), 711–723.

    Article  CAS  Google Scholar 

  9. Higgins, D.; Zamani, P.; Yu, A. P.; Chen, Z. W. The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ. Sci. 2016, 9(2), 357–390.

    Article  CAS  Google Scholar 

  10. Xu, F.; Cai, R. J.; Zeng, Q. C.; Zou, C.; Wu, D. C.; Li, F.; Lu, X. E.; L, Y. R.; Fu, R. W. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. J. Mater. Chem. 2011, 21(6), 1970–1976.

    Article  CAS  Google Scholar 

  11. Wei, W.; Liang, H.W.; Parvez, K.; Zhuang, X. D.; Feng, X. L.; Müllen, K. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2014, 126(6), 1596–1600.

    Article  Google Scholar 

  12. Wang, G.; Sun, Y. H.; Li, D. B.; Liang, H. W.; Dong, R. H.; Feng, X. L.; Müllen, K. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica. Angew. Chem. Int. Ed. 2015, 127(50), 15406–15411.

    Article  Google Scholar 

  13. Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. 2015, 54(2), 588–593.

    CAS  Google Scholar 

  14. Liang, C. D.; Li, Z. J.; Dai, S. Mesoporous carbon materials: synthesis and modification. Angew. Chem. Int. Ed. 2008, 47(20), 3696–3717.

    Article  CAS  Google Scholar 

  15. Deng, Y. H.; Wei, J.; Sun, Z. K.; Zhao, D. Y. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem. Soc. Rev. 2013, 42(9), 4054–4070.

    Article  CAS  Google Scholar 

  16. Tang, Z. W.; Liu, S. H.; Lu, Z. T.; Lin, X. D.; Zheng, B. N.; Liu, R. L.; Wu, D. C.; Fu, R. W. A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 2017, 53(50), 6764–6767.

    Article  CAS  Google Scholar 

  17. Lu, H.; Fan, L.; Liu, Q. M.; Wei, J. R.; Ren, T. B.; Du, J. Z. Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym. Chem. 2012, 3(8), 2217–2227.

    Article  CAS  Google Scholar 

  18. Xiong, D. A.; He, Z., P.; An, Y. L.; Li, Z.; Wang, H.; Chen, X.; Shi, L. Q. Temperature-responsive multilayered micelles formed from the complexation of PNIPAM-b-P4VP block-copolymer and PS-b-PAA core-shell micelles. Polymer 2008, 49(10), 2548–2552.

    Article  CAS  Google Scholar 

  19. Liu, T.; Qian, Y. F.; Hu, X. L.; Ge, Z. S.; Liu, S. Y. Mixed polymeric micelles as multifunctional scaffold for combined magnetic resonance imaging contrast enhancement and targeted chemotherapeutic drug delivery. J. Mater. Chem. 2012, 22(11), 5020–5030.

    Article  CAS  Google Scholar 

  20. Fan, W. J.; Fan, G. Q.; Zhang, X. H.; Yang, Z. H. Getting to the bottom morphology of block copolymer thin films. Chinese J. Polym. Sci. 2016, 34(1), 88–93.

    Article  CAS  Google Scholar 

  21. Zhang, W. Q.; Shi, L. Q.; An, Y. L.; Gao, L. C.; Wu, K.; Ma, R. J. A convenient method of tuning amphiphilic block copolymer micellar morphology. Macromolecules 2004, 37(7), 2551–2555.

    Article  CAS  Google Scholar 

  22. Lin, Z. X.; Liu, S. H.; Mao, W. T.; Tian, H.; Wang, N.; Zhang, N. H.; Tian, F.; Han, L.; Feng, X. L.; Mai, Y. Y. Tunable self-assembly of diblock copolymers into colloidal particles with triply periodic minimal surfaces. Angew. Chem. Int. Ed. 2017, 56(25), 7135–7140.

    Article  CAS  Google Scholar 

  23. Wei, J.; Sun, Z. K.; Luo, W.; Li, Y. H.; Elzatahry, A. A.; Al-Enizi, A. M.; Deng, Y. H.; Zhao, D. Y. New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 2017, 139(5), 1706–1713.

    Article  CAS  Google Scholar 

  24. Liu, S. H.; Gordiichuk, P.; Wu, Z. S.; Liu, Z. Y.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D. Q.; Mai, Y. Y.; Herrmann, A.; Müllen, K.; Feng, X. L. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 2015, 6, 8817–8825.

    Article  CAS  Google Scholar 

  25. Qiao, M.; Tang, C.; He, G.; Qiu, K.; Binions, R.; Parkin, I. P.; Zhang, Q.; Guo, Z.; Titirici, M. M. Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versusactive sites. J. Mater. Chem. A 2016, 4(32), 12658–12666.

    Article  CAS  Google Scholar 

  26. Aijaz, A.; Fujiwara, N.; Xu, Q. From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 2014, 136(19), 6790–6793.

    Article  CAS  Google Scholar 

  27. Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7(1), 442–450.

    Article  CAS  Google Scholar 

  28. Chen, P.; Wang, L. K.; Wang, G.; Gao, M. R.; Ge, J.; Yuan, W. J.; Shen, Y. H.; Xie, A. J.; Yu, S. H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 2014, 7(12), 4095–4103.

    Article  CAS  Google Scholar 

  29. Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Polydopaminegraphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale 2015, 7(29), 12598–12605.

    Article  CAS  Google Scholar 

  30. Cao, C. A.; Zhuang, X. D.; Su, Y. Z.; Zhang, Y.; Zhang, F.; Wu, D. Q.; Feng, X. L. 2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polym. Chem. 2014, 5(6), 2057–2064.

    Article  CAS  Google Scholar 

  31. Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. 3D nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy 2013, 2(2), 241–248.

    Article  CAS  Google Scholar 

  32. Lin, Z. Y.; Waller, G. H.; Liu, Y.; Liu, M. L.; Wong, C. P. Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Carbon 2013, 53, 130–136.

    Article  CAS  Google Scholar 

  33. Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective nitrogen doping in graphene for oxygen reduction reactions. Chem. Commun. 2013, 49(83), 9627–9629.

    Article  CAS  Google Scholar 

  34. Mai, Y. Y.; Eisenberg, A. Controlled incorporation of particles into the central portion of vesicle walls. J. Am. Chem. Soc. 2010, 132(29), 10078–10084.

    Article  CAS  Google Scholar 

  35. Tian, H.; Lin, Z. X.; Xu, F. G.; Zheng, J. X.; Zhuang, X. D.; Mai, Y. Y.; Feng, X. L. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblockcopolymer micelles in solution. Small 2016, 12(23), 3155–3163.

    Article  CAS  Google Scholar 

  36. Shahriary, L.; Athawale, A. A. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2014, 2(01), 58–63.

    Google Scholar 

  37. Liu, S. H.; Wang, F. X.; Dong, R. H.; Zhang, T.; Zhang, J.; Zhuang, X. D.; Mai, Y. Y.; Feng, X. L. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size. Adv. Mater. 2016, 28(38), 8365–8370.

    Article  CAS  Google Scholar 

  38. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8(1), 36–41.

    Article  CAS  Google Scholar 

  39. Hu, C. G.; Dai, L. M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 2016, 55(39), 11736–11758.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51573091, 21774076, 21320102006 and 91527304), Program of the Shanghai Committee of Science and Technology (Nos. 17JC1403200 and 16JC1400703), and Program for Shanghai Eastern Scholar. The authors also appreciate the Instrumental Analysis Center of Shanghai Jiao Tong University for some measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Yong Mai.

Additional information

Invited paper for special issue of “Supramolecular Self-Assembly”

Electronic supplementary material

10118_2018_2091_MOESM1_ESM.pdf

Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Tian, H., Zhu, SY. et al. Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution. Chin J Polym Sci 36, 266–272 (2018). https://doi.org/10.1007/s10118-018-2091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2091-1

Keywords

Navigation