Skip to main content
Log in

Reaction kinetics in anionic copolymerization: A revisit on Mayo-Lewis equation

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Reactivity ratio is a traditional parameter quantifying the reaction kinetics in copolymerization, which is important for potentially controlling microstructures of polymers and guiding the copolymerization process. Our recent experiments using tube-NMR technique enable us to in situ monitor the concentration profiles of the co-monomers during the anionic copolymerization process. This motivates us to revisit the Mayo-Lewis (ML) equation, which is the basis for derivation of reactivity ratio and has been extensively utilized in addition copolymerization. We found that although an explicit ML expression is desirable for ease of calculation and correlation with experimental data, it fails in our anionic copolymerization experiment as well as some data available in the literature. The origin is ascribed to the validity of the steady state assumption which is essential in the ML equation. This assumption can be released in anionic copolymerization and replaced by the fact that the overall concentration of the living chain ends keeps constant throughout the copolymerization. Alternative numerical method has been utilized to obtain the rate constants and consequently the reactivity ratios. Our work suggests that the ML equation should be applied with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hsieh, H.L. and Quirk, R.P., “Anionic polymerization: principles and practical application”, Marcel Dekker, Inc. New York, 1996

    Google Scholar 

  2. Odian, G., “Principles of polymerization”, 4th ed. John Wiley & Sons, Inc. Hoboken, NJ, 2004

    Book  Google Scholar 

  3. Srichan, S., Mutlu, H., Badi, N., Badi, N. and Lutz, J.F., Angew. Chem. Int. Ed., 2014, 53: 9231

    Article  CAS  Google Scholar 

  4. Colquhoun, H. and Lutz, J.F., Nature Chem., 2014, 6: 455

    Article  CAS  Google Scholar 

  5. Lutz, J.F., Ouchi, M., Liu, D.R. and Sawamoto, M., Science, 2013, 341: 628

    Article  CAS  Google Scholar 

  6. Natalello, A., Tonhauser, C. and Frey, H., ACS Macro Lett., 2013, 2: 409

    Article  CAS  Google Scholar 

  7. Brown, J.R., Sides, S.W. and Hall, L.M., ACS Macro Lett., 2013, 2: 1105

    Article  CAS  Google Scholar 

  8. Lee, B.F., Wolffs, M., Delaney, K.T., Sprafke, J.K., Leibfarth, F.A., Hawker, C.J. and Lynd, N.A., Macromolecules, 2012, 45: 3722

    Article  CAS  Google Scholar 

  9. Sun, X.Y., Luo, Y.W., Wang, R., Li, B.G., Liu, B. and Zhu, S.P., Macromolecules, 2007, 40: 849

    Article  CAS  Google Scholar 

  10. Beckingham, B.S. and Register, R.A., Macromolecules, 2011, 44: 4313

    Article  CAS  Google Scholar 

  11. Liu, F. and Tan, H., Chinese J. Polym. Sci., 2013, 31(12): 1647

    Article  CAS  Google Scholar 

  12. Arlotti, S., Desbois, P., Warzelhan, V. and Deffieux, A., Polymer, 2009, 50: 3057

    Article  Google Scholar 

  13. Lutz, J.F., Macromolecules, 2015, 48: 4759

    Article  CAS  Google Scholar 

  14. Zhang, W.B. and Cheng, S.Z.D., Chinese J. Polym. Sci., 2015, 33(6): 797

    Article  CAS  Google Scholar 

  15. Liu, Y., Wei, W. and Xiong, H.M., Polymer, 2013, 54: 6572

    Article  CAS  Google Scholar 

  16. Liu, Y., Li, Y. G. and Xiong, H.M., ACS Macro Lett., 2013, 2: 45

    Article  CAS  Google Scholar 

  17. Wei, W., Liu, Y. and Xiong, H.M., ACS Macro Lett., 2014, 3: 892

    Article  CAS  Google Scholar 

  18. Liu, Y., Wei, W. and Xiong, H.M., Polym. Chem., 2015, 6: 583

    Article  CAS  Google Scholar 

  19. Obermeier, B., Wurm, F. and Frey, H., Macromolecules, 2010, 43: 2244

    Article  CAS  Google Scholar 

  20. Natalello, A., Were, M., Alkan, A., Wurm, F.R. and Frey, H., Macromolecules, 2013, 46: 8467

    Article  CAS  Google Scholar 

  21. Zhang, W., Allgaier, J. and Zorn, R., Macromolecules, 2013, 46: 3931

    Article  CAS  Google Scholar 

  22. Natalello, A., Alkan, A., von Tiedemann, P., Tonhauser, Wurm, F.R. and Frey, H., ACS Macro Lett., 2014, 3: 560

    Article  CAS  Google Scholar 

  23. Mayo, F.R. and Lewis, F.M., J. Am. Chem. Soc., 1944, 66: 1594

    Article  CAS  Google Scholar 

  24. Fineman, M. and Ross, S.D., J. Polym. Sci., Part A: Polym. Chem., 1950, 5: 259

    CAS  Google Scholar 

  25. Yezrielev, J., Brokhina, E.L. and Roskin, Y.S., Vysokomol. Soedin. Ser. A, 1969, 11: 1670

    Google Scholar 

  26. Tosi, C., Eur. Polym. J., 1973, 9: 357

    Article  CAS  Google Scholar 

  27. Braun, D., Brendlein, W. and Mott, G., Eur. Polym. J., 1973, 9: 1007

    Article  CAS  Google Scholar 

  28. Joshi, R.M. and Joshi, S.G., J. Macromol. Sci. Chem., 1971, 5: 1329

    Article  Google Scholar 

  29. Kelen, T. and Tudos, F., J. Macromol. Sci. Chem., 1975, 9: 1

    Article  Google Scholar 

  30. Kelen, T., Tudos, F., Turcsanyi, B. and Kennedy, J. P., J. Polym. Sci., 1977, 15: 3047

    CAS  Google Scholar 

  31. Tidwell, P.W. and Mortimer, G.A., J. Macromol. Sci. Rev. Macromol. Chem., 1970, 4: 281

    Article  CAS  Google Scholar 

  32. Yamada, B., Itahashi, M. and Otsu, T., J. Polym. Sci., Part A: Polym. Chem., 1978, 16: 1719

    CAS  Google Scholar 

  33. Evans, D.J., Int. J. Comput. Math., 1991, 39: 217

    Article  Google Scholar 

  34. Tapia, R.A., “Quasi-Newton methods for equality constrained optimization: equivalence of existing methods and a new implementation”, Eds. by Meyer, R.R., Robinson, S.M., Academic Press, New York, 1978, p.125

  35. Tang, A., Sci. China-Chem., 1962, 5: 605

    Google Scholar 

  36. Rudin, A., “Elements of polymer science and engineering”, Academic Press, San Diego, 1999, p.241

    Book  Google Scholar 

  37. Beckingham, B.S., Sanoja, G.E. and Lynd, N.A., Macromolecules, 2015, 48: 6922

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-ming Xiong  (熊辉明).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21374063 and 21574082).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Zc., Liu, Y., Wei, W. et al. Reaction kinetics in anionic copolymerization: A revisit on Mayo-Lewis equation. Chin J Polym Sci 34, 431–438 (2016). https://doi.org/10.1007/s10118-016-1758-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-016-1758-8

Keywords

Navigation