Skip to main content
Log in

Similarity reasoning in formal concept analysis: from one- to many-valued contexts

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In this paper, concept similarity in formal concept analysis (FCA) with many-valued contexts is addressed. In particular, this work focuses on FCA many-valued contexts where attribute values are intervals (FCA with interordinal scaling), here referred to as IFCA. IFCA is based on interval type-2 fuzzy sets, which provide a simplification of the more general type-2 fuzzy sets. In this work, a method for evaluating concept similarity in IFCA is proposed, which is a problem that has not been adequately investigated in the literature, although the increasing interest in the combination of FCA with fuzzy sets. Note that the topic addressed in this paper is presented by providing simple examples in order to reach a broad audience of readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akmal S, Batres R (2013) A methodology for developing manufacturing process ontologies. J Jpn Ind Manag Assoc 64:303–316

    Google Scholar 

  2. Akmal S, Shih L, Batres R (2014) Ontology-based similarity for product information retrieval. Comput Ind 65:91–107

    Article  Google Scholar 

  3. Alam M, Buzmakov A, Napoli A, Sailanbayev A (2015) Revisiting pattern structures for structured attribute sets. In: Proceedings of international conference on concept lattices and their applications, Clermont-Ferrand, France, 13–16 October 2015, CEUR workshop proceedings, pp 241–252

  4. Alam M, Napoli A (2015) Interactive exploration over RDF data using formal concept analysis. In: IEEE international conference on data science and advanced analytics (DSAA), pp 1–10

  5. Bai L, Liu M (2008) A fuzzy-set based semantic similarity matching algorithm for web service. In: Proceedings of the IEEE international conference on services computing, vol 2. IEEE Computer Society

  6. Belohlávek R, Vychodil V (2005) What is a fuzzy concept lattice? In: Belohlávek R, Snásel V (eds) Proceedings of concept lattices and their applications (CLA), Olomouc, Czech Republic, 7–9 September 2005, pp 34–45

  7. Belohlávek R, Outrata J, Vychodil V (2008) Fast factorization by similarity of fuzzy concept lattices with hedges. Int J Found Comput Sci 19(2):255–269

    Article  MathSciNet  MATH  Google Scholar 

  8. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  9. Bilgin A, Hagras H, Alghazzawi D, Malibari A, Alhaddad MJ (2015) Employing an enhanced interval approach to encode words into linear general type-2 fuzzy sets for computing with words applications. In: IEEE international conference on fuzzy systems (FUZZ-IEEE), Istanbul, Turkey

  10. Burusco A, Fuentes-Gonzlez R (2001) The study of the interval-valued contexts. Fuzzy Sets Syst 121(3):439–452

    Article  MathSciNet  MATH  Google Scholar 

  11. De Luca A, Termini S (1972) A definition of nonprobabilistic entropy in the setting of fuzzy sets theory. Inf Comput 20:301–312

    MathSciNet  MATH  Google Scholar 

  12. Djouadi Y, Prade H (2009) Interval-valued fuzzy formal concept analysis. In: Rauch et al (eds) Foundations of intelligent systems, ISMIS 2009, LNAI, vol 5722, pp 592–601

  13. Dubois D, Prade H (2012) Fundamentals of fuzzy sets. Springer, New York

    MATH  Google Scholar 

  14. Ferr S, Cellier P (2016) Graph-FCA in practice. In: International conference on conceptual structures (ICCS), pp 107–121

  15. Formica A (2006) Ontology-based concept similarity in formal concept analysis. Inf Sci 176(18):2624–2641

    Article  MathSciNet  MATH  Google Scholar 

  16. Formica A (2008) Concept similarity in formal concept analysis: an information content approach. Knowl Based Syst 21(1):80–87

    Article  MathSciNet  Google Scholar 

  17. Formica A, Pourabbas E (2009) Content based similarity of geographic classes organized as partition hierarchies. Knowl Inf Syst 20(2):221–241

    Article  Google Scholar 

  18. Formica A (2010) Concept similarity in fuzzy formal concept analysis for semantic web. Int J Uncertain Fuzziness Knowl Based Syst 18(2):153–167

    Article  MathSciNet  Google Scholar 

  19. Formica A (2012) Semantic web search based on rough sets and fuzzy formal concept analysis. Knowl Based Syst 26:40–47

    Article  Google Scholar 

  20. Formica A (2013) Similarity reasoning for the semantic web based on fuzzy concept lattices: an informal approach. Inf Syst Front 15(3):511–520

    Article  Google Scholar 

  21. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin. ISBN 978-3-540-62771-5

    Book  MATH  Google Scholar 

  22. Ganter B, Kuznetsov SO (2001) Pattern structures and their projections. In: Delugach HS, Stumme G (eds) International conference on conceptual structures (ICCS). LNAI, vol 2120. Springer, pp 129–142

  23. Hao M, Mendel JM (2016) Encoding words into normal interval type-2 fuzzy sets: HM approach. IEEE Trans Fuzzy Syst 24(4):865–879

    Article  Google Scholar 

  24. Hitzler P, Krötzsch M, Rudolph S (2009) Foundations of semantic web technologies. Chapman & Hall/CRC, London

    Book  Google Scholar 

  25. Hitzler P (2011) What’s happening in semantic web ... and what FCA could have to do with it. In: 9th International conference on formal concept analysis (ICFCA) Nicosia, Cyprus, 2–6 May 2011. LNCS 6628, Springer, pp 18–23

  26. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vauddes Sci Nat 44:223

    Google Scholar 

  27. Jay N, Nuemi G, Gadreau M, Quantin C (2013) A data mining approach for grouping and analyzing trajectories of care using claim data: the example of breast cancer. BMC Med Inform Decis Mak 13:130

    Article  Google Scholar 

  28. Kaytoue M, Kuznetsov SO, Napoli A, Duplessis S (2011) Mining gene expression data with pattern structures in formal concept analysis. Inf Sci 181(10):1989–2001

    Article  MathSciNet  Google Scholar 

  29. Kirchberg M, Leonardi E, Tan YS, Link S, Ko RKL, Lee BS (2012) Formal concept discovery in semantic web data. In: Domenach F, Ignatov DI, Poelmans J (eds) International conference on formal concept analysis (ICFCA). Springer, Berlin, pp 164–179

    Chapter  Google Scholar 

  30. Keler C (2007) Similarity measurement in context. In: Kokinov B (ed) CONTEXT’07. LNAI, vol 4635. Springer, Berlin, pp 277–290

  31. Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res Logist Q 2:83–97

    Article  MathSciNet  MATH  Google Scholar 

  32. Li C, Li J, He M (2016) Concept lattice compression in incomplete contexts based on K-medoids clustering. Int J Mach Learn Cybern 7(4):539–552

    Article  MathSciNet  Google Scholar 

  33. Li J, Mei C, Lv Y (2012) Knowledge reduction in real decision formal contexts. Inf Sci 189:191–207

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin D (1998) An information-theoretic definition of similarity. In: Proceedings of the international conference on machine learning, Madison, Wisconsin, USA, Morgan Kaufmann, pp 296–304

  35. Liang Q, Mendel JM (2000) Interval type-2 fuzzy logic systems: theory and design. IEEE Trans Fuzzy Syst 8(5):535–550

    Article  Google Scholar 

  36. Liu F, Mendel JM (2008) Encoding words into interval Type-2 fuzzy sets using an interval approach. IEEE Trans Fuzzy Syst 16(6):1503–1521

    Article  Google Scholar 

  37. Maarek YS, Berry DM, Kaiser GE (1991) An information retrieval approach for automatically constructing software libraries. IEEE Trans Softw Eng 17(8):800–813

    Article  Google Scholar 

  38. Mendel JM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  39. Mendel JM (2007) Computing with words and its relationship with fuzzistics. Inf Sci 177:988–1006

    Article  MathSciNet  Google Scholar 

  40. Mendel JM (2007) Computing with words: Zadeh, Turing, Popper and Occam. IEEE Comput Intell Mag 2(4):10–17

    Article  Google Scholar 

  41. Mendel JM, Wu D (2008) Perceptual reasoning for perceptual computing. IEEE Trans Fuzzy Syst 16(6):1550–1564

    Article  Google Scholar 

  42. Mendel JM, Wu D (2010) Perceptual computing: aiding people in making subjective judgments. Wiley, New York

    Book  Google Scholar 

  43. Mendel JM (2015) Type-2 fuzzy sets and systems: a retrospective. Inform Spektrum 38(6):523–532

    Article  Google Scholar 

  44. Mendel JM (2016) A comparison of three approaches for estimating (synthesizing) an interval type-2 fuzzy set model of a linguistic term for computing with words. Granul Comput 1:59–69

    Article  Google Scholar 

  45. Park S, Suresh NC, Jeong B (2008) Sequence-based clustering for Web usage mining: a new experimental framework and ANN-enhanced K-means algorithm. Data Knowl Eng 65(3):512–543

    Article  Google Scholar 

  46. Poelmans J, Ignatov DI, Kuznetsov SO, Dedene G (2013) Formal concept analysis in knowledge processing: a survey on applications. Expert Syst Appl 40(16):6538–6560

    Article  Google Scholar 

  47. Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the fourteenth international joint conference on artificial intelligence, (IJCAI), Montral Qubec, Canada, 20–25 August 1995, Morgan Kaufmann, pp 448–453

  48. Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11:95–130

    Article  MATH  Google Scholar 

  49. Rodriguez A, Egenhofer M (2004) Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure. Int J Geogr Inf Sci 18(3):229–256

    Article  Google Scholar 

  50. Rosch E (1973) Natural categories. Cogn Psychol 4:328–350

    Article  Google Scholar 

  51. Safaeipour H, Zarandi MHF, Turksen IB (2013) Developing type-2 fuzzy FCA for similarity reasoning in the semantic web. Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS). IEEE, pp 1477–1482

  52. Sertkaya B (2010) A survey on how description logic ontologies benefit from FCA. In: Proceedings of international conference on concept lattices and their applications (CLA), Seville, Spain, 19–21 October 2010, pp 2–21

  53. Singh PK, Aswani Kumar C, Li J (2016) Knowledge representation using interval-valued fuzzy formal concept lattice. Soft Comput 20:1485–1502

    Article  MATH  Google Scholar 

  54. Stumme G, Maedche A (2001) FCA-MERGE: bottom-up merging of ontologies. In: Proceedings of international joint conference on artificial intelligence (IJCAI), Seattle, USA, pp 225–234

  55. Tho QT, Hui SC, Cheuk A, Fong M, Cao TH (2006) Automatic fuzzy ontology generation for semantic web. IEEE Trans Knowl Data Eng 18(6):842–856

    Article  Google Scholar 

  56. Wang JH, Hao J (2006) A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 14(3):435–445

    Article  Google Scholar 

  57. WordNet: a lexical database for the English language (2010). https://wordnet.princeton.edu/. Accessed 10 Oct 2013

  58. Wu D, Mendel JM (2007) Uncertainty measures for interval type-2 fuzzy sets. Inf Sci 177:5378–5393

    Article  MathSciNet  MATH  Google Scholar 

  59. Wu D, Mendel JM (2009) A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf Sci 179:1169–1192

    Article  MathSciNet  Google Scholar 

  60. Yao Y (2017) Interval sets and three-way concept analysis in incomplete contexts. Int J Mach Learn Cybern 8(1):3–20

    Article  Google Scholar 

  61. Zadeh LA (1965) Fuzzy sets. Inf. Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  62. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-1. Inf Sci 8:199–249

    Article  MathSciNet  MATH  Google Scholar 

  63. Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111

    Article  Google Scholar 

  64. Zhao Y, Li J, Liu W, Xu W (2017) Cognitive concept learning from incomplete information. Int J Mach Learn Cyber 8(1):159–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Formica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formica, A. Similarity reasoning in formal concept analysis: from one- to many-valued contexts. Knowl Inf Syst 60, 715–739 (2019). https://doi.org/10.1007/s10115-018-1252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1252-4

Keywords

Navigation