Skip to main content

Advertisement

Log in

Two thresholds determine climatic control of forest fire size in Europe and northern Africa

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Fire weather indices predict fire extent from meteorological conditions assuming a monotonic function; this approach is frequently used to predict future fire patterns under climate change scenarios using linear extrapolation. However, the relationship between weather and fire extent may potentially depend on the existence of fuel moisture content thresholds above which this relationship changes dramatically, challenging this statistical approach. Here, we combine the continuous and the threshold approaches to analyze satellite-detected fires in Europe during 2001–2010 in relation to meteorological conditions, showing that fire size response to decreasing fuel moisture content follows a ramp function, i.e., with two plateaus separated by a phase of monotonic increase. This study confirms that at continental and high-resolution temporal scales, large fires are very unlikely to occur under moist conditions, but it also reveals that fire size stops to be controlled by fuel moisture content above a given threshold of dryness. Thus, fuel moisture content control only applies when fire is not limited by other factors such as fuel load, as large fires were virtually absent during the considered period in dry regions with less than 500 mm of average annual precipitation, i.e., low-productive areas where fuel amount would be scarce and discontinuous. In regions with sufficient fuel, other factors such as fire suppression or fuel discontinuity can impede large fires even under very dry weather conditions. These findings are relevant under current climatic trends in which the fire season length, in terms of number of days with drought code values above the observed thresholds (break points), is increasing in many parts of the Mediterranean, while it is decreasing in eastern Europe and remains unchanged in central Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander ME, Cruz MG (2013) Limitations on the accuracy of model predictions of wildland fire behaviour: a state-of-the-knowledge overview. For Chron 89:372–383

    Article  Google Scholar 

  • Amiro BD, Logan K, Wotton B, Flannigan M, Todd J, Stocks B, Martell D (2005) Fire weather index system components for large fires in the Canadian boreal forest. Int J Wildland Fire 13:391–400

    Article  Google Scholar 

  • Bachelet D, Lenihan JM, Daly C, Neilson RP (2000) Interactions between fire, grazing and climate change at wind cave national park, SD. Ecol Model 134:229–244

    Article  CAS  Google Scholar 

  • Bajocco S, Ricotta C (2008) Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? Landsc Ecol 23:241–248

    Article  Google Scholar 

  • Belward AS, Estes JE, Kline KD (1999) The IGBP-DIS global 1-km landcover data set DISCover: a project overview. Photogram Eng Remote Sens 65:1013–1020

    Google Scholar 

  • Bergeron Y, Flannigan M, Gauthier S, Leduc A, Lefort P (2004) Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. Ambio 33:356–360

    Google Scholar 

  • Beverly JL, Wotton BM (2007) Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. Int J Wildland Fire 16:161–173

    Article  Google Scholar 

  • Boulanger Y, Gauthier S, Gray DR, Le Goff H, Lefort P, Morissette J (2013) Fire regime zonation under current and future climate over eastern Canada. Ecol Appl 23:904–923

    Article  Google Scholar 

  • Bradstock RA (2010) A biogeographic model of fire regimes in Australia: current and future implications. Global Ecol Biogeogr 19:145–158

    Article  Google Scholar 

  • Brotons L, Aquilué N, de Cáceres M, Fortin M, Fall A (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 8:e62392

    Article  CAS  Google Scholar 

  • Brown TJ, Hall BL, Westerling AL (2004) The impact of twenty-first century climate change on wildland fire danger in the western United States: an applications perspective. Clim Change 62:365–388

    Article  Google Scholar 

  • Carvalho A, Flannigan MD, Logan K, Miranda AI, Borrego C (2008) Fire activity in Portugal and its relationship to weather and the Canadian fire weather index system. Int J Wildland Fire 17:328–338

    Article  Google Scholar 

  • Carvalho A, Flannigan M, Logan K, Gowman L, Miranda A, Borrego C (2010) The impact of spatial resolution on area burned and fire occurrence projections in Portugal under climate change. Clim Change 98:177–197

    Article  CAS  Google Scholar 

  • Carvalho AC, Carvalho A, Martins H, Marques C, Rocha A, Borrego C, Viegas DX, Miranda AI (2011) Fire weather risk assessment under climate change using a dynamical downscaling approach. Environ Modell Softw 26:1123–1133

    Article  Google Scholar 

  • Chuvieco E (2008) Satellite Observation of Biomass Burning. In: Chuvieco E (ed) Earth Observation of Global Change. Springer, Netherlands, pp 109–142

    Chapter  Google Scholar 

  • Dimitrakopoulos AP, Vlahou M, Anagnostopoulou CG, Mitsopoulos I (2011) Impact of drought on wildland fires in Greece: implications of climatic change? Clim Change 109:331–347

    Article  Google Scholar 

  • FAO (2007) Fire management global assessment 2006. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fernandes PM, Botelho HS (2003) A review of prescribed burning effectiveness in fire hazard reduction. Int J Wildland Fire 12:117–128

    Article  Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262:221–229

    Article  CAS  Google Scholar 

  • Flannigan M, Logan K, Amiro B, Skinner W, Stocks B (2005) Future area burned in Canada. Clim Change 72:1–16

    Article  CAS  Google Scholar 

  • Girardin MP, Mudelsee M (2008) Past and future changes in Canadian boreal wildfire activity. Ecol Appl 18:391–406

    Article  Google Scholar 

  • Hantson S, Padilla M, Corti D, Chuvieco E (2013) Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens Environ 131:152–159

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119

    Article  Google Scholar 

  • Hofrichter J (2007) Change Point Detection in Generalized Linear Models. Dissertation or Thesis, Technische Universität Graz

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Kanamitsu M, Kumar A, Juang H–H, Schemm J-, Wang W, Yang F, Hong SY, Peng P, Chen W, Moorthi S, Ji M (2002) NCEP dynamical seasonal forecast system 2000. Bull Am Meteorol Soc 83:1019–1037

    Article  Google Scholar 

  • Keane RE, Holsinger LM, Pratt SD (2006) Simulating historical landscape dynamics using the landscape fire succession model LANDSUM version 4.0 RMRS-GTR-171CD

  • Keeley JE, Fotheringham CJ, Morais M (1999) Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829–1832

    Article  CAS  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484

    Article  CAS  Google Scholar 

  • Krawchuk MA, Moritz MA (2011) Constraints on global fire activity vary across a resource gradient. Ecology 92:121–132

    Article  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien M, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4:e5102

    Article  Google Scholar 

  • Larjavaara M, Kuuluvainen T, Tanskanen H, Venalainen A (2004) Variation in forest fire ignition probability in Finland. Silva Fenn 38:253–266

    Google Scholar 

  • Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13:1667–1681

    Article  Google Scholar 

  • Li C (2000) Reconstruction of natural fire regimes through ecological modelling. Ecol Model 134:129–144

    Article  Google Scholar 

  • Lieth H (1975) Primary productivity of the biosphere. Springer-Verlag, New York

    Book  Google Scholar 

  • Lloret F, Calvo E, Pons X, Dìaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecol 17:745–759

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Oliveres J, Piñol J, Lloret F (2010) Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For Ecol Manage 259:2366–2374

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J (2011) An integrative model of human-influenced fire regimes and landscape dynamics. Environ Modell Softw 26:1028–1040

    Article  Google Scholar 

  • Loepfe L, Lloret F, Román-Cuesta RM (2012a) Comparison of burnt area estimates derived from satellite products and national statistics in Europe. Int J Remote Sens 33:3653–3671

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Piñol J (2012b) Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim Change 115:693–707

    Article  Google Scholar 

  • Luo R, Dong Y, Gan M, Li D, Niu S, Oliver A, Wang K, Luo Y (2013) Global Analysis of Influencing Forces of Fire Activity: the Threshold Relationships between Vegetation and Fire. Life Science Journal 10

  • Malamud BD, Millington JDA, Perry GLW (2005) Characterizing wildfire regimes in the United States. P Natl Acad Sci USA 102:4694–4699

    Article  CAS  Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nature Geosci 1:697–702

    Article  CAS  Google Scholar 

  • Marlon JR, Bartlein PJ, Walsh MK, Harrison SP, Brown KJ, Edwards ME, Higuera PE, Power MJ, Anderson RS, Briles C, Brunelle A, Carcaillet C, Daniels M, Hu FS, Lavoie M, Long C, Minckley T, Richard PJH, Scott AC, Shafer DS, Tinner W, Umbanhowar CE, Whitlock C (2009) Wildfire responses to abrupt climate change in North America. P Natl Acad Sci USA 106:2519–2524

    Article  CAS  Google Scholar 

  • Meyn A, Schmidtlein S, Taylor SW, Girardin MP, Thonicke K, Cramer W (2010) Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920–2000. Int J Wildland Fire 19:272–283

    Article  Google Scholar 

  • Minnich RA (1983) Fire mosaics in southern California and Northern Baja California. Science 219:1287–1294

    Article  CAS  Google Scholar 

  • Moritz MA, Keeley JE, Johnson EA, Schaffner AA (2004) Testing a basic assumption of scrubland fire management: how important is fuel age? Front Ecol Environ 2:67–72

    Article  Google Scholar 

  • Moritz MA, Parisien M, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Hayhoe K (2012) Climate change and disruptions to global fire activity. Ecosphere 3:49

    Article  Google Scholar 

  • Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1 deg × 1 deg fire history reconstruction for the 20th century. Global Change Biol 11:398–420

    Article  Google Scholar 

  • Mudelsee M (2000) Ramp function regression: a tool for quantifying climate transitions. Comput Geosci 26:293–307

    Article  Google Scholar 

  • Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350

    Article  Google Scholar 

  • Pausas J, Fernández-Muñoz S (2011) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226

    Article  Google Scholar 

  • Pausas JG, Paula S (2012) Fuel shapes the fire–climate relationship: evidence from Mediterranean ecosystems. Global Ecol Biogeogr 21:1074–1082

    Article  Google Scholar 

  • Pellizzaro G, Cesaraccio C, Duce P, Ventura A, Zara P (2007) Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int J Wildland Fire 16:232–241

    Article  Google Scholar 

  • Perera A (2008) BFOLDS 1.0: a spatial simulation model for exploring large scale fire regimes and succession in boreal forest landscapes. Forest Research Report: Ontario Forest Research Institute no. 152

  • Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357

    Article  Google Scholar 

  • Piñol J, Beven K, Viegas DX (2005) Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecol Model 183:397–409

    Article  Google Scholar 

  • Piñol J, Castellnou M, Beven KJ (2007) Conditioning uncertainty in ecological models: assessing the impact of fire management strategies. Ecol Model 207:34–44

    Article  Google Scholar 

  • Preisler HK, Westerling AL (2007) Statistical model for forecasting monthly large wildfire events in western United States. J Appl Meteor Climatol 46:1020–1030

    Article  Google Scholar 

  • Preisler HK, Chen SC, Fujioka F, Benoit JW, Westerling AL (2008) Meteorological model applications for estimating probabilities of wildland fires. Int J Wildland Fire 17:305–316

    Article  Google Scholar 

  • Preisler HK, Westerling AL, Gebert KM, Munoz-Arriola F, Holmes TP (2011) Spatially explicit forecasts of large wildland fire probability and suppression costs for California. Int J Wildland Fire 20:508–517

    Article  Google Scholar 

  • Pueyo S (2007) Self-organised criticality and the response of wildland fires to climate change. Clim Change 82:131–161

    Article  Google Scholar 

  • Pueyo S, Graça De Alencastro, Lima Paulo Maurício, Barbosa RI, Cots R, Cardona E, Fearnside PM (2010) Testing for criticality in ecosystem dynamics: the case of Amazonian rainforest and savanna fire. Ecol Lett 13:793–802

    Article  Google Scholar 

  • Ricotta C, Avena G, Marchetti M (1999) The flaming sandpile: self-organized criticality and wildfires. Ecol Model 119:73–77

    Article  Google Scholar 

  • Rivas-Martínez S (2008) Globalbioclimatics, Phytosociological Research Center, http://www.globalbioclimatics.org

  • Rosenzweig ML (1968) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102:67–74

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988) Primary production of the central grassland region of the United-States. Ecology 69:40–45

    Article  Google Scholar 

  • Scepan J (1999) Thematic validation of high-resolution global land-cover data sets. Photogram Eng Remote Sens 65:1051–1060

    Google Scholar 

  • Slocum M, Beckage B, Platt W, Orzell S, Taylor W (2010) Effect of climate on wildfire size: a cross-scale analysis. Ecosystems 13:828–840

    Article  Google Scholar 

  • Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin J, Lawrence K, Hartley GR, Mason JA, McKENNEY DW (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Change 38:1–13

    Article  Google Scholar 

  • Sturtevant BR, Scheller RM, Miranda BR, Shinneman D, Syphard A (2009) Simulating dynamic and mixed-severity fire regimes: a process-based fire extension for LANDIS-II. Ecol Model 220:3380–3393

    Article  Google Scholar 

  • Tanskanen H, Venäläinen A (2008) The relationship between fire activity and fire weather indices at different stages of the growing season in Finland. Boreal Environ Res 13:285–302

    Google Scholar 

  • Trouet V, Taylor A, Carleton A, Skinner C (2001) Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theor Appl Climatol 95:349–360

    Article  Google Scholar 

  • Turner MG, Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landscape Ecol 9:59–77

    Article  Google Scholar 

  • Van Wagner CE, Pickett TL (1985) Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. Canadian Forestry Service, Ottawa

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern Applied Statistics with S. Springer, New York

    Book  Google Scholar 

  • Viegas DX, Piñol J, Viegas MT, Ogaya R (2001) Estimating live fine fuels moisture content using meteorologically-based indices. Int J Wildland Fire 10:223–240

    Article  Google Scholar 

  • Wastl C, Schunk C, Leuchner M, Pezzatti GB, Menzel A (2012) Recent climate change: long-term trends in meteorological forest fire danger in the Alps. Agric For Meteorol 162:1–13

    Article  Google Scholar 

  • Webb WL, Lauenroth WK, Szarek SR, Kinerson RS (1983) Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the United States. Ecology 64:134–151

    Article  Google Scholar 

  • Weise DR, Zhou X, Sun L, Mahalingam S (2005) Fire spread in chaparral—‘go or no-go?’. Int J Wildland Fire 14:99–106

    Article  Google Scholar 

  • Westerling A, Bryant B (2008) Climate change and wildfire in California. Clim Change 87:231–249

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase Western US Forest Wildfire Activity. Science 313:940–943

    Article  CAS  Google Scholar 

  • Westerling A, Bryant B, Preisler H, Holmes T, Hidalgo H, Das T, Shrestha S (2011) Climate change and growth scenarios for California wildfire. Clim Change 109:445–463

    Article  Google Scholar 

  • Williams AAJ, Karoly DJ, Tapper N (2001) The sensitivity of Australian fire danger to climate change. Clim Change 49:171–191

    Article  CAS  Google Scholar 

  • Wood SN (2000) Modelling and smoothing parameter estimation with multiple quadratic penalties. J R Stat Soc B 62:413–428

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministry of Science and Innovation (project MONTES, Consolider-Ingenio 2010) and the Generalitat de Catalunya (AGAUR, SGR2009-247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Loepfe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44772 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loepfe, L., Rodrigo, A. & Lloret, F. Two thresholds determine climatic control of forest fire size in Europe and northern Africa. Reg Environ Change 14, 1395–1404 (2014). https://doi.org/10.1007/s10113-013-0583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0583-7

Keywords

Navigation