Skip to main content

Advertisement

Log in

Long-term simulation of effects of energy crop cultivation on nitrogen leaching and surface water quality in Saxony/Germany

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The production of energy crops in Germany is a growing agronomic sector and is expected to occupy a substantial share of farmland in the near future. At the same time, there are concerns that energy crops might cause increased nitrogen pollution of soil water, surface water and groundwater. Therefore, the Federal State of Saxony, Germany, funded a study on potential effects of an intensified cultivation of energy crops. In frame of this study, we used the Web GIS-based model STOFFBILANZ to simulate N leaching from the rooting zone and N loads of surface water for a reference scenario and an energy crop scenario. For the reference scenario, we used data representing the crop cultivation for the year 2005 at municipality level. We found that the total loads for N leaching from the rooting zone of cropland are highest for the loess region (8,067 t year−1), followed by mountainous region (6,797 t year−1) and lowland (5,443 t year−1). However, highest N fluxes in the leachate from rooting zones have been simulated for lowland (40.6 kg ha−1 year−1) and mountainous region (37.1 kg ha−1 year−1), while nitrate concentrations of leachate were highest for the lowland (101.8 mg l−1). In terms of diffuse N input into surface water, the mountainous region is the most important source area (total N load 6,380 t year−1, flux 34.6 kg ha−1 year−1). Retention by in-stream processes accounts for 15 % (3,784 t year−1) of the total N load leaving the study area (25,136 t year−1). In the 2020 energy crop scenario, shares of rape and silage maize (id., ensiled corn) were limited for each municipality to a maximum of 25 and 33 %, respectively. The conversion of grasslands to crop farming was not allowed. Under these conditions, we found slight to substantial reductions of nitrogen loads for leachate from the rooting zone and for surface waters. The simulated reduction depends strongly on local conditions. Only small reductions (ca. 4–8 %) were found for the lowlands and mountainous regions of Saxony, while reductions for the loess region were substantial (ca. 22 %). A major outcome of our study is that the cultivation of energy crops might reduce N loss if certain preconditions are assumed, for example, without conversion of grasslands to crop farming. However, effects might vary widely depending on local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander RB, Böhlke JK, Boyer EW, David MB, Harvey JW, Mulholland PJ, Seitzinger SP, Tobias CR, Tonitto C, Wollheim WM (2009) Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry 93:91–116

    Article  CAS  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah S, Williams JR (1998) Large area hydrologic modeling and assessment, part I: model development. JAWRA 34:73–89

    CAS  Google Scholar 

  • Behrendt H, Kornmilch M, Opitz D, Schmoll O, Scholz G, Uebe R (2002) Estimation of the nutrient inputs into river systems- experiences from German rivers. Reg Environ Change 3:107–117

    Article  Google Scholar 

  • Berkhoff K (2008) Spatially explicit groundwater vulnerability assessment to support the implementation of the water framework directive—a practical approach with stakeholders. Hydrol Earth Syst Sci 12:111–122

    Article  CAS  Google Scholar 

  • Berndes G (2002) Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global Environ Change 12:253–271

    Article  Google Scholar 

  • Börjesson P (1999) Environmental effects of energy crop cultivation in Sweden. Biomass Bioenergy 16:137–154

    Article  Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Gate P, Devienne F, Antonioletti R, Durr C, Nicoullaud B, Beaudoin N, Recous S, Tayot X, Plenet D, Richard G, Cellier P, Machet JM, Meynard JM, Delécolle R (1998) STICS: a generic crop simulation model with water and nitrogen balance. Application to wheat and maize. I. Theory and parameterization. Agronomie 22(1):69–92

    Article  Google Scholar 

  • Brisson N, Launay M, Mary B, Beaudoin N (2009) Conceptual basis, formalisations and parameterization of the stics crop model. Editions Quae, Paris

    Google Scholar 

  • de Klein JJM (2008) From ditch to delta: nutrient retention in running waters. PhD-thesis Wageningen University, Wageningen

  • Donner SD, Kucharik CJ, Oppenheimer M (2004) The influence of climate on in-stream removal of nitrogen. Geophys Res Lett 31:L20509

    Article  Google Scholar 

  • EEA (2007) Estimating the environmentally compatible bioenergy potential from agriculture. EEA Technical report 12/2007, European Environmental Agency, Copenhagen

  • EFMA (2006) Forecast of food, farming and fertiliser use in the European Union 2006–2016. European fertiliser manufacturers association, Brussels

  • Eiswerth ME, van Kooten GC (2010) Balancing bio-energy cropping benefits and water quality impacts: a dynamic optimilization approach. Can J Agric Econ 58:463–480

    Article  Google Scholar 

  • Erisman JW, Domburg P, de Haan BJ, de Vries W, Kros J, Velthof G, Sanders K (2005) The dutch nitrogen cascade in the European perspective. ECN Biomass, Coal Environ Res, ECN-C—05-007. http://www.ecn.nl/publications/PdfFetch.aspx?nr=ECN-C-05-007. Accessed 14 March 2011

  • European Parliament (2000) Establishing a framework for Community action in the foeld of water policy. Directive 2000/60/EC, Council of the European Parliament, Brussels

  • Finck M (2010) Modellierung des N-Austrags unter Berücksichtigung regionaler N-Umsetzungsprozesse, Hohenheimer Bodenkundliche Hefte, Heft 96, 231 S, Diss., Uni Hohenheim

  • Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222

    Article  CAS  Google Scholar 

  • Franko U, Kuka K, Romanenko I, Romanenkov V (2007) Validation of the CANDY model with Russian long-term experiments. Reg Environ Change 7(2):79–91

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby J (2003) The nitrogen cascade. Bioscience 53(4):341–356

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton M (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gauger T, Haenel HD, Rösemann C, Dämmgen U, Bleeker A, Erisman JW, Vermeulen AT (2008) National implementation of the UNECE convention on long-range transboundary air pollution (effects), part 1: deposition loads, final report, FKZ 204 63 252, UBA, Dessau

  • Gebel M, Halbfass S, Bürger S, Friese H, Naumann S (2010a) Modelling of nitrogen turnover and leaching in Saxony. Adv Geosci 27:139–144

    Article  Google Scholar 

  • Gebel M, Halbfaß S, Bürger S, Uhlig M, Grunewald K, Kaiser M (2010b) STOFFBILANZ—Manual. http://www.stoffbilanz.de. Accessed 14 March 2011

  • Giles J (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791

    Article  CAS  Google Scholar 

  • Grimm-Strele J, Casper M, van Dijk P, Finck M, Gudera T, Korte S (2008) Der Modellverbund MoNit zur Simulation der Grundwasserbelastung durch Nitrat im Oberrheingraben. Wasserwirtschaft 1–2:55–89

    Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • Halbfass S (2005) Entwicklung eines GIS-gestützten Modells zur Quantifizierung diffuser Phosphoreinträge in Oberflächengewässer im mittleren Massstab unter Berücksichtigung geoökologisch wirksamer Raumstrukturen. Diss., Rhombos-Verlag, Bd. 1, Berlin (in German)

  • Halbfass S, Gebel M, Friese H, Grunewald K, Mannsfeld K (2009) Atlas der Nährstoffeinträge in sächsische Gewässer. https://publikationen.sachsen.de/bdb/download.do;jsessionid=25291D6B2BB376FE6022FC6292017180.bdb_lb?id=2296290. Accessed 14 March 2011 (in German)

  • Halbfass S, Gebel M, Bürger S (2010) Modelling of long term nitrogen retention in surface waters. Adv Geosci 27:145–148

    Article  Google Scholar 

  • Hannappel S, Reinhardt S, Kuhn K, Lankau R (2007) Konzeptionelle Grundlagen und Aufbau der überblicksweisen Überwachung der Grundwasserkörper in Sachsen gemäß den Anforderungen der WRRL.- In: Grundwasser Altlasten Aktuell, Materialien zur Altlastenbehandlung, Hrsg.: Landesamt für Umwelt, Landwirtschaft und Geologie. http://www.umwelt.sachsen.de/de/wu/umwelt/lfug/lfug-internet/documents/32_Altlasten_GW_Aktuell2007.pdf. Accessed 5 March 2012 (in German)

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103(30):11206–11210

    Article  CAS  Google Scholar 

  • Kersebaum KC, Matzdorf B, Kiesel J, Piorr A, Steidl J (2006) Model-based evaluation of agri-environmental measures in the Federal State of Brandenburg (Germany) concerning N pollution of groundwater and surface water. J Plant Nutr Soil Sci 169:352–359

    Article  CAS  Google Scholar 

  • Kronvang B, Andersen HE, Borgensen C, Dalgaard T, Larsen SE, Bogestrand J, Blicher-Mathiasen G (2008) Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environ Sci Policy 11:144–152

    Article  Google Scholar 

  • Krysanova V, Becker A (1999) Integrated modelling of hydrological processes and nutrient dynamics at the river basin scale. Hydrobiologia 410:131–138

    Article  Google Scholar 

  • Kunkel R, Wendland F (1997) WEKU, A GIS-supported stochastic model of groundwater residence times in upper aquifers for the supraregional groundwater management. Environ Geol 30:1–9

    Article  Google Scholar 

  • Lam QD, Schmalz B, Fohrer N (2009) Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment. Ger Adv Geosci 21:49–55

    Article  Google Scholar 

  • Ledoux E, Gomez E, Monget J-M, Viavattene C, Viennot P, Benoit M, Mignolet C, Schott C, Mary B (2007) Agriculture and groundwater nitrate contamination in the seine basin. The STICS-MODCOU modelling chain. Sci Total Environ 375(1–3):33–47

    Article  CAS  Google Scholar 

  • Mary B, Guérif J (1994) Intérêts et limites des modèles de prévision de l’ évolution des matières organiques et de l’azote dans le sol. Cahiers Agric 3:247–257

    Google Scholar 

  • Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82

    Article  CAS  Google Scholar 

  • Meijerink G, Langeveld H, Hellegers P (2007) Biofuels and water: an exploration. http://www.boci.wur.nl/NR/rdonlyres/98CCE2E3-0FA2-4274-BCA0-20713CA1E125/62620/Fullreport1_Water_Meijerink_Hellegers_Langeveld.pdf. Accessed 14 March 2011

  • Meynard JM, Justes E, Machet JM, Recous S (1996) Fertilisation azotée des cultures annuelles de plein champ. In: Lemaire G, Nicolardot B (eds) Maitrise de l’azote dans les agro-systèmes. Les colloques de l’INRA, Reims, pp 183–199

    Google Scholar 

  • Post J, Krysanova V, Suckow F, Mirschel W, Rogasik J, Merbach I (2007) Integrated eco-hydrological modelling of soil organic matter dynamics for the assessment of environmental change impacts in meso- to macro-scale river basins. Ecol Model 206:93–109

    Article  Google Scholar 

  • Reiche EW (1994) Modelling water and nitrogen dynamics on catchment scale. Ecol Model 75(76):371–384

    Article  Google Scholar 

  • Sächsisches Staatsministerium für Umwelt und Landwirtschaft (2011) Stickstoff-Bilanz. http://www.umwelt.sachsen.de/umwelt/4686.asp?id=4822&headline=Land-%20und%20Forstwirtschaft. Accessed 25 Feb 2012 (in German)

  • Schoumans OF, Silgram M, Groenendijk P, Bouraoui F, Andersen HE, Kronvang B, Behrendt H, Arheimer B, Johnsson H, Panagopoulos Y, Mimikou M, Lo Porto A, Reisser H, Le Gall G, Barr A, Anthony SG (2009) Description of nine nutrient loss models: capabilities and suitability based on their characteristics. J Environ Monit 11:506–514

    Article  CAS  Google Scholar 

  • Seitzinger SP, Styles R, Boyer EW, Alexander RB, Billen G, Howarth RW, Mayer B, Van Breemen N (2002) Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA. Biogeochemístry 57/58:199–237

    Article  CAS  Google Scholar 

  • Stream Solute Workshop (1990) Concepts and methods for assessing solute dynamics in stream ecosystems. J North Am Benthologic Soc 9(2):95–119

    Article  Google Scholar 

  • UBA (2008) Hintergrundpapier zu einer multimedialen Stickstoff-Emissionsminderungsstrategie. http://www.umweltbundesamt.de/luft/downloads/emissionen/hg-stickstoffemissionsminderungsstrategie.pdf. Accessed 14 March 2011 (in German)

  • Uhlig M, Gebel M, Halbfass S, Liedl R (2010) Mesoscale modeling of nitrate pollution of rivers by groundwater. Grundwasser 15:163–176 (in German)

    Article  CAS  Google Scholar 

  • US Congress (1993) Potential environmental impacts of bioenergy crop production. http://www.fas.org/ota/reports/9337.pdf. Accessed 14 March 2011

  • US Soil Conservation Service (1972) National engineering handbook (Chap 4: Hydrology, 2nd reprint), US Department of Agriculture, Washington

  • Vassiljev A, Stålnacke P (2003) Statistical modelling of riverine nutrient sources and retention in the lake Peipsi drainage basin. Diffuse pollution conference Dublin 2003, 10C GIS, 10/41–10/46

  • Venohr M, Donohue I, Fogelberg S, Arheimer B, Irvine K, Behrendt H (2003) Nitrogen retention in a river system under consideration of the river morphology and occurence of lakes. Diffuse pollution conference Dublin 2003, 1C Water Resources Management, 1/61–1/67

  • Venterink HO, Wiegman F, Van der Lee GEM, Vermaat JE (2003) Role of active floodplains for nutrient retention in the River Rhine. J Environ Qual 32:1430–1435

    Article  CAS  Google Scholar 

  • Wendland F, Kunkel R, Grimvall A, Kronvang B, Müller-Wohlfeil D (2001) Model system for the management of nitrogen leaching at the scale of river basins and regions. Water Sci Technol 43(7):215–222

    CAS  Google Scholar 

  • Wessolek G, Duijnisveld WHM, Trinks S (2008) Hydro-pedotransfer functions (HPTFs) for predicting annual percolation rate on a regional scale. J Hydrol 356:17–27

    Article  Google Scholar 

  • Wollheim WM, Vörösmarty CJ, Peterson BJ, Seitzinger SP, Hopkinson CS (2006) Relationship between river size and nutrient removal. Geophysic Res Lett 33:L06410. doi:10.1029/2006GL025845

  • Wollheim WM, Peterson BJ, Hopkinson CS, Thomas SM, Vörösmarty CJ (2008) Dynamics of N removal over annual time periods in a suburban river network. J Geophys Res 113:1–17

    Article  Google Scholar 

  • Young R, Onstad CA, Bosch DD, Anderson WP (1987) AGNPS: Agricultural non-point source pollution model: a watershed analysis tool. USDA-Agricultural Research Service. Conservation Research Report 35, U.S. Department of Agriculture, Washington, DC

Download references

Acknowledgments

The study was funded by the Saxonian Agency for Environment, Agriculture and Geology. We would like to thank all colleagues of the agency for their cooperation, support and for providing data on agriculture, hydrology, soil and climate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebel, M., Halbfass, S., Bürger, S. et al. Long-term simulation of effects of energy crop cultivation on nitrogen leaching and surface water quality in Saxony/Germany. Reg Environ Change 13, 249–261 (2013). https://doi.org/10.1007/s10113-012-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0330-5

Keywords

Navigation