Skip to main content
Log in

Polyhedral approximation in mixed-integer convex optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Generalizing both mixed-integer linear optimization and convex optimization, mixed-integer convex optimization possesses broad modeling power but has seen relatively few advances in general-purpose solvers in recent years. In this paper, we intend to provide a broadly accessible introduction to our recent work in developing algorithms and software for this problem class. Our approach is based on constructing polyhedral outer approximations of the convex constraints, resulting in a global solution by solving a finite number of mixed-integer linear and continuous convex subproblems. The key advance we present is to strengthen the polyhedral approximations by constructing them in a higher-dimensional space. In order to automate this extended formulation we rely on the algebraic modeling technique of disciplined convex programming (DCP), and for generality and ease of implementation we use conic representations of the convex constraints. Although our framework requires a manual translation of existing models into DCP form, after performing this transformation on the MINLPLIB2 benchmark library we were able to solve a number of unsolved instances and on many other instances achieve superior performance compared with state-of-the-art solvers like Bonmin, SCIP, and Artelys Knitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In Lemma 3 we provide an explicit counterexample.

  2. The results reported here are based on Pajarito version 0.1. The latest release, version 0.4, has been almost completely rewritten with significant algorithmic advances, which will be discussed in upcoming work with Chris Coey.

References

  1. Abhishek, K., Leyffer, S., Linderoth, J.: FilMINT: an outer approximation-based solver for convex mixed-integer nonlinear programs. INFORMS J. Comput. 22(4), 555–567 (2010)

    Article  MathSciNet  Google Scholar 

  2. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137(1–2), 453–476 (2013)

    Article  MathSciNet  Google Scholar 

  4. Belotti, P., Berthold, T., Neves, K.: Algorithms for discrete nonlinear optimization in FICO Xpress. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5 (2016)

  5. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013)

    Article  MathSciNet  Google Scholar 

  6. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and Applied Mathematics (2001)

  7. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  8. Bixby, R., Maes, C., Garcia, R.: Recent developments in the Gurobi optimizer. In: Gurobi Optimization Workshop, INFORMS Annual Meeting, Philadelphia, PA (2015)

  9. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)

    Article  MathSciNet  Google Scholar 

  10. Bonami, P., KilinÇ, M., Linderoth, J.: Algorithms and software for convex mixed integer nonlinear programs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 1–39. Springer, New York (2012)

    Chapter  Google Scholar 

  11. Bonami, P., Lee, J., Leyffer, S., Wächter, A.: On branching rules for convex mixed-integer nonlinear optimization. J. Exp. Algorithm. 18, 2.6:2.1-2.6:2.31 (2013)

    Article  MathSciNet  Google Scholar 

  12. Byrd, R.H., Nocedal, J., Waltz, R.: KNITRO: an integrated package for nonlinear optimization. In: di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 35–59. Springer, Berlin (2006)

    Chapter  Google Scholar 

  13. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86(3), 595–614 (1999)

    Article  MathSciNet  Google Scholar 

  14. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  16. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320. doi:10.1137/15M1020575 (2017)

  17. Duran, M., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  MathSciNet  Google Scholar 

  18. Fourer, R., Orban, D.: DrAmpl: a meta solver for optimization problem analysis. CMS 7(4), 437–463 (2009)

    Article  MathSciNet  Google Scholar 

  19. Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer semidefinite programs. Available on Optimization Online http://www.optimization-online.org/DB_HTML/2016/04/5394.html (2016)

  20. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008)

    Google Scholar 

  21. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  22. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N. (eds.) Global Optimization, Nonconvex Optimization and Its Applications, vol. 84, pp. 155–210. Springer, New York (2006)

    Google Scholar 

  23. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 61–89. Springer, New York (2012)

    Chapter  Google Scholar 

  24. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31(12), 1533–1546 (1985)

    Article  MathSciNet  Google Scholar 

  25. Harjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H.: Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105(3), 594–603 (1998)

    Article  Google Scholar 

  26. Hien, L.T.K.: Differential properties of euclidean projection onto power cone. Math. Methods Oper. Res. 82(3), 265–284 (2015). doi:10.1007/s00186-015-0514-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Hijazi, H., Bonami, P., Ouorou, A.: An outer-inner approximation for separable mixed-integer nonlinear programs. INFORMS J. Comput. 26(1), 31–44 (2014)

    Article  MathSciNet  Google Scholar 

  28. Hijazi, H., Liberti, L.: Constraint qualification failure in action. Oper. Res. Lett. 44(4), 503–506 (2016)

    Article  MathSciNet  Google Scholar 

  29. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (1996). Two volumes - 2nd printing

    MATH  Google Scholar 

  30. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958–2008—From the Early Years to the State-of-the-Art. Springer, Berlin (2010)

  31. Kılınç, M.R.: Disjunctive cutting planes and algorithms for convex mixed integer nonlinear programming. Ph.D. Thesis, University of Wisconsin-Madison (2011)

  32. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D. Thesis, University of Dundee (1993)

  33. Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A., Munson, T., Sharma, M.: Minotaur: toolkit for mixed integer nonlinear optimization problems. https://wiki.mcs.anl.gov/minotaur/index.php/Main_Page. Accessed 16 April 2017

  34. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Applications. In: International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing, vol 284(13), pp. 193–228 (1998)

    Article  MathSciNet  Google Scholar 

  35. Lubin, M., Yamangil, E., Bent, R., Vielma, J.P.: Extended formulations in mixed-integer convex programming. In: Louveaux Q., Skutella M. (eds.) Integer Programming and Combinatorial Optimization: 18th International Conference, IPCO 2016, Liège, Belgium, June 1–3, 2016, Proceedings, pp. 102–113. Springer International Publishing (2016)

    MATH  Google Scholar 

  36. Martin, R.: Large Scale Linear and Integer Optimization: A Unified Approach. Springer, New York (1999)

    Book  Google Scholar 

  37. Mittelmann, H.: MINLP benchmark. http://plato.asu.edu/ftp/minlp_old.html. Accessed 13 May 2016

  38. MINLPLIB2 library. http://www.gamsworld.org/minlp/minlplib2/html/. Accessed 13 May 2016

  39. Serrano, S.A.: Algorithms for unsymmetric cone optimization and an implementation for problems with the exponential cone. Ph.D. thesis, Stanford University, Stanford, CA (2015)

  40. Shen, X., Diamond, S., Gu, Y., Boyd, S.: Disciplined Convex-Concave Programming. ArXiv e-prints. http://arxiv.org/abs/1604.02639 (2016)

  41. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  Google Scholar 

  42. Tramontani, A.: Mixed Integer Programming Workshop, June 1st–4th, 2015. The Gleacher Center, Chicago, IL (2015)

  43. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. In: Proceedings of HPTCDL ’14, pp. 18–28. IEEE Press, Piscataway, NJ, USA (2014)

  44. Vielma, J.P., Dunning, I., Huchette, J., Lubin, M. (2017) Extended formulations in mixed integer conic quadratic programming. Math. Program. Comput. 9(3), 369–418 (2017). doi:10.1007/s12532-016-0113-y

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Chris Coey for proofreading and Madeleine Udell and the anonymous reviewers for their comments. M. Lubin was supported by the DOE Computational Science Graduate Fellowship, which is provided under grant number DE-FG02-97ER25308. The work at LANL was funded by the Center for Nonlinear Studies (CNLS) and was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. J.P. Vielma was funded by NSF grant CMMI-1351619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles Lubin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubin, M., Yamangil, E., Bent, R. et al. Polyhedral approximation in mixed-integer convex optimization. Math. Program. 172, 139–168 (2018). https://doi.org/10.1007/s10107-017-1191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1191-y

Keywords

Mathematics Subject Classification

Navigation