Skip to main content
Log in

A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a cutting-plane approach (namely, Benders decomposition) for a class of capacitated multi-period facility location problems. The novelty of this approach lies on the use of a specialized interior-point method for solving the Benders subproblems. The primal block-angular structure of the resulting linear optimization problems is exploited by the interior-point method, allowing the (either exact or inexact) efficient solution of large instances. The consequences of different modeling conditions and problem specifications on the computational performance are also investigated both theoretically and empirically, providing a deeper understanding of the significant factors influencing the overall efficiency of the cutting-plane method. The methodology proposed allowed the solution of instances of up to 200 potential locations, one million customers and three periods, resulting in mixed integer linear optimization problems of up to 600 binary and 600 millions of continuous variables. Those problems were solved by the specialized approach in less than one hour and a half, outperforming other state-of-the-art methods, which exhausted the (144 GB of) available memory in the largest instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albareda-Sambola, M., Fernández, E., Hinojosa, Y., Puerto, J.: The multi-period incremental service facility location problem. Comput. Oper. Res. 36, 1356–1375 (2009)

    Article  MATH  Google Scholar 

  2. Albareda-Sambola, M., Alonso-Ayuso, A., Escudero, L., Fernández, E., Hinojosa, Y., Pizarro-Romero, C.: A computational comparison of several formulations for the multi-period incremental service facility location problem. TOP 18, 62–80 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alumur, S., Kara, B.Y., Melo, T.: Location and logistics. In: Laporte, G., Nickel, S., Saldanha-da-Gama, F. (eds.) Location Science. Springer, Berlin (2015)

    Google Scholar 

  4. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method. Math. Program. 87, 385–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Comput. Manag. Sci. 2, 3–19 (2005). (English translation of the original paper appeared in. Numerische Mathematik 4(238–252), 1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cao, Y., Laird, C.D., Zavala, V.M.: Clustering-based preconditioning for stochastic programs. Comput. Optim. Appl. 64, 379–406 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, J.: A specialized interior-point algorithm for multicommodity network flows. SIAM J. Optim. 10, 852–877 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro, J.: An interior-point approach for primal block-angular problems. Comput. Optim. Appl. 36, 195–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro, J.: Interior-point solver for convex separable block-angular problems. Optim. Methods Softw. 31, 88–109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular problems. Math. Program. A 130, 415–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, J., Nasini, S.: Mathematical programming approaches for classes of random network problems. Eur. J. Oper. Res. 245, 402–414 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chvátal, V.: Linear Programming. W.H. Freeman and Company, New York (1983)

    MATH  Google Scholar 

  13. Colombo, M., Gondzio, J., Grothey, A.: A warm-start approach for large-scale stochastic linear programs. Math. Program. 127, 371–397 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cornuéjols, G.P., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory. Wiley-Interscience, New York (1990)

    Google Scholar 

  15. Escudero, L.F., Garín, M.A., Pérez, G., Unzueta, A.: Lagrangian decomposition for large-scale two-stage stochastic mixed 0–1 problems. TOP 20, 347–374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fischetti, M., Ljubić, I., Sinnl, M.: Benders decomposition without separability: a computational study for capacitated facility location problems. Eur. J. Oper. Res. 253, 557–569 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischetti, M., Ljubić, I., Sinnl, M.: Redesigning Benders decomposition for large scale facility location. Manag. Sci. doi:10.1287/mnsc.2016.2461 (2016)

  18. Gondzio, J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6, 137–156 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gondzio, J., Sarkissian, R.: Parallel interior-point solver for structured linear programs. Math. Program. 96, 561–584 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gondzio, J., Vial, J.-P.: Warm start and \(\epsilon \)-subgradients in the cutting plane scheme for block-angular linear programs. Comput. Optim. Appl. 14, 17–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gondzio, J., González-Brevis, P., Munari, P.: New developments in the primal-dual column generation technique. Eur. J. Oper. Res. 224, 41–51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Held, M., Wolfe, P., Crowder, H.: Validation of subgradient optimization. Math. Program. 6, 62–88 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jena, S., Cordeau, J.-F., Gendron, B.: Modeling and solving a logging camp location problem. Ann. Oper. Res. 232, 151–177 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Jena, S., Cordeau, J.-F., Gendron, B.: Dynamic facility location with generalized modular capacity. Transp. Sci. 49, 484–499 (2015)

    Article  Google Scholar 

  25. Lemaréchal, C., Strodiot, J.J., Bihain, A.: On a bundle algorithm for nonsmooth optimization. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming 4, pp. 245–282. Academic Press, New York (1981)

    Chapter  Google Scholar 

  26. Lübbecke, M.E.: Column generation. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science, Wiley Online Library, Chichester (2011)

  27. Lubin, M., Hall, J.A., Petra, C.G., Anitescu, M.: Parallel distributed-memory simplex for large-scale stochastic LP problems. Comput. Optim. Appl. 55, 571–596 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Magnanti, T.L., Wong, R.T.: Accelerating Benders decomposition: algorithmic enhancement and model selection criteria. Oper. Res. 29, 464–484 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Magnanti, T.L., Wong, R.T.: Decomposition methods for facility location problems. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory. Wiley, New York (1990)

    Google Scholar 

  30. Malick, J., de Oliveira, W., Zaourar, S.: Nonsmooth optimization using uncontrolled inexact information. In: Technical Report, INRIA Grenoble (2013). http://www.optimization-online.org/DBHTML/2013/05/3892.html

  31. Medhi, D.: Bundle-based decomposition for large-scale convex optimization: error estimate and application to block-angular linear programs. Math. Program. 66, 79–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Melo, M.T., Nickel, S., Saldanha-da-Gama, F.: Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33, 181–208 (2006)

    Article  MATH  Google Scholar 

  33. Melo, M.T., Nickel, S., Saldanha-da-Gama, F.: Facility location and supply chain management—a review. Eur. J. Oper. Res. 196, 401–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mitchell, J.E., Borchers, B.: Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Ann. Oper. Res. 62, 253–276 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Munari, P., Gondzio, J.: Using the primal-dual interior point algorithm within the branch-price-and-cut method. Comput. Oper. Res. 40, 2026–2036 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nickel, S., Saldanha-da-Gama, F.: Multi-period facility location. In: Laporte, G., Nickel, S., Saldanha-da-Gama, F. (eds.) Location Science. Springer, Berlin (2015)

    Google Scholar 

  37. Nickel, S., Saldanha-da-Gama, F., Ziegler, H.-P.: A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega 40, 511–524 (2012)

    Article  Google Scholar 

  38. Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21, 517–544 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Petra, C.G., Schenk, O., Lubin, M., Gaertner, K.: An augmented incomplete factorization approach for computing the Schur complement in stochastic optimization. SIAM J. Sci. Comput. 36, C139–C162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Polyak, B.T.: Subgradient method: a survey of Soviet research. In: Lemaréchal, C., Mifflin, R. (eds.) Nonsmooth Optimization, pp. 5–28. Pergamon Press, Oxford (1978)

    Google Scholar 

  41. Rei, W., Cordeau, J.-F., Gendreau, M., Soriano, P.: Accelerating Benders decomposition by local branching. INFORMS J. Comput. 21, 333–345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Robinson, S.M.: Bundle-based decomposition: description and preliminary results. In: Prékopa, A., Szelezsfin, J., Strazicky, B. (eds.) System Modelling and Optimization, Lecture Notes in Control and Information Sciences, vol. 84. Springer, Berlin (1986)

    Google Scholar 

  43. Ruszczyński, A.: An augmented Lagrangian decomposition method for block diagonal linear programming problems. Oper. Res. Lett. 8, 287–294 (1989)

    Article  MathSciNet  Google Scholar 

  44. van Ackooij, W., Frangioni, A., de Oliveira, W.: Inexact stabilized Benders’ decomposition approaches with application to chance-constrained problems with finite support. Comput. Optim. Appl. doi:10.1007/s10589-016-9851-z (2016)

  45. Wentges, P.: Accelerating Benders decomposition for the capacitated facility location problem. Math. Methods Oper. Res. 44, 267–290 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philapelphia (1996)

    MATH  Google Scholar 

  47. Zakeri, G., Philpott, A.B., Ryan, D.M.: Inexact cuts in Benders decomposition. SIAM J. Optim. 10, 643–657 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author has been supported by MINECO/FEDER Grants MTM2012-31440 and MTM2015-65362-R of the Spanish Ministry of Economy and Competitiveness; the second author has been supported by the European Research Council-ref. ERC-2011-StG 283300-REACTOPS; the third author has been supported by the Portuguese Science Foundation (FCT-Fundação para a Ciência e Tecnologia) under the Project UID/MAT/04561/2013 (CMAF-CIO/FCUL). The authors would like to thank the two anonymous reviewers for their valuable comments, suggestions and insights that helped improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Castro.

Appendix: Tables of numerical experiments of Sect. 4.1

Appendix: Tables of numerical experiments of Sect. 4.1

Tables 8, 9 and 10 contain the CPU times (seconds) required by the Benders decomposition and the branch-and-cut to solve instances of (1)–(8), with one, three and six time periods respectively. The parameter specification has been defined in Table 1, with different combinations of \(\alpha \) and \(\beta \) and for two sizes \(m = n = 500\) and \(m = n = 1000\).

Table 8 CPU time of instances of two sizes \(m = n = 500\) and \(m = n = 1000\), with one time period (\(k = 1\))

1.1 One period

See Table 8.

1.2 Three periods

See Table 9.

Table 9 CPU time of instances of two sizes \(m = n = 500\) and \(m = n = 1000\), with three time periods (\(k = 3\))

1.3 Six periods

See Table 10.

Table 10 CPU time of instances of two sizes \(m = n = 500\) and \(m = n = 1000\), with six time periods (\(k = 6\))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, J., Nasini, S. & Saldanha-da-Gama, F. A cutting-plane approach for large-scale capacitated multi-period facility location using a specialized interior-point method. Math. Program. 163, 411–444 (2017). https://doi.org/10.1007/s10107-016-1067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1067-6

Keywords

Mathematics Subject Classification

Navigation