Skip to main content
Log in

Phase recovery, MaxCut and complex semidefinite programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Phase retrieval seeks to recover a signal \(x \in {\mathbb {C}}^p\) from the amplitude \(|A x|\) of linear measurements \(Ax \in {\mathbb {C}}^n\). We cast the phase retrieval problem as a non-convex quadratic program over a complex phase vector and formulate a tractable relaxation (called PhaseCut) similar to the classical MaxCut semidefinite program. We solve this problem using a provably convergent block coordinate descent algorithm whose structure is similar to that of the original greedy algorithm in Gerchberg and Saxton (Optik 35:237–246, 1972), where each iteration is a matrix vector product. Numerical results show the performance of this approach over three different phase retrieval problems, in comparison with greedy phase retrieval algorithms and matrix completion formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akutowicz, E.J.: On the determination of the phase of a Fourier integral, I. Trans. Am. Math. Soc. 83, 179–192 (1956)

    MATH  MathSciNet  Google Scholar 

  2. Becker, S., Candes, E.J., Grant, M.: Templates for convex cone problems with applications to sparse signal recovery. Math. Prog. Comp. 3, 165–218 (2011)

    Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. MPS-SIAM series on optimization. Society for Industrial and Applied Mathematics: Mathematical Programming Society, Philadelphia, PA (2001)

  4. Ben-Tal, A., Nemirovski, A., Roos, C.: Extended matrix cube theorems with applications to \(\mu \)-theory in control. Math. Oper. Res. 28(3), 497–523 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.S.: Robust Optimization. Princeton University Press, Princeton, NJ (2009)

    Book  MATH  Google Scholar 

  6. Bertsekas, D.: Nonlinear Programming. Athena Scientific, Belmont, MA (1998)

    Google Scholar 

  7. Bhatia, R.: Matrix Analysis, vol. 169. Springer, NewYork (1997)

    Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Bunk, O., Diaz, A., Pfeiffer, F., David, C., Schmitt, B., Satapathy, D.K., Veen, J.F.: Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. Acta Crystallogr. A 63(4), 306–314 (2007)

    Article  Google Scholar 

  10. Candes, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Google Scholar 

  11. Candes, E.J., Li, X.: Solving quadratic equations via phaselift when there are about as many equations as unknowns. ArXiv preprint arXiv:1208.6247 (2012)

    Google Scholar 

  12. Candes, E.J., Recht, B.: Exact matrix completion via convex optimization. Preprint (2008)

  13. Candes, E.J., Eldar, Y., Strohmer, T., Voroninski, V.L: Phase retrieval via matrix completion. ArXiv preprint arXiv:1109.0573 (2011)

  14. Chai, A., Moscoso, M., Papanicolaou, G.: Array imaging using intensity-only measurements. Inverse Probl. 27, 015005 (2011)

    Article  MathSciNet  Google Scholar 

  15. Chandrasekaran, V., Recht, B., Parrilo, P., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math 12(6), 805–849 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chi, T., Ru, P., Shamma, S.: Multiresolution spectrotemporal analysis of complex sounds. J. Acoust. Soc. Am 118, 887–906 (2005)

    Article  Google Scholar 

  17. d’Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30(1), 56–66 (2006)

    Article  Google Scholar 

  18. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62(1), 557–574 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Demanet, L., Hand, P.: Stable optimizationless recovery from phaseless linear measurements. ArXiv preprint arXiv:1208.1803 (2012)

  20. El Karoui, N., d’Aspremont, A.: Approximating eigenvectors by subsampling. ArXiv:0908.0137 (2009)

  21. Fazel, M., Hindi, H., Boyd, S.P.: Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In: American Control Conference, 2003. Proceedings of the 2003, vol. 3, pp. 2156–2162. Ieee (2003)

  22. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  23. Gerchberg, R., Saxton, W.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  24. Goemans, M.X., Williamson, D.P.: Approximation algorithms for max-3-cut and other problems via complex semidefinite programming. J. Comput. Syst. Sci. 68(2), 442–470 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Griffin, D., Lim, J.: Signal estimation from modified short-time fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(2), 236–243 (1984)

    Article  Google Scholar 

  27. Harrison, R.W.: Phase problem in crystallography. JOSA A 10(5), 1046–1055 (1993)

    Article  Google Scholar 

  28. Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM J. Optim. 6, 342–361 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  30. Kisialiou, M., Luo, Z.Q.: Probabilistic analysis of semidefinite relaxation for binary quadratic minimization. SIAM J Optim 20, 1906 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. ArXiv preprint arXiv:1209.4785 (2012)

  32. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1(2), 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Luo, Z.Q., Luo, X., Kisialiou, M.: An efficient quasi-maximum likelihood decoder for psk signals. In: Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP’03). 2003 IEEE International Conference on, vol. 6, pp. VI-561. IEEE (2003)

  34. Miao, J., Ishikawa, T., Shen, Q., Earnest, T.: Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59, 387–410 (2008)

    Article  Google Scholar 

  35. Moravec, M.L., Romberg, J.K., Baraniuk, R.G.: Compressive phase retrieval. In: Proc. of SPIE vol. 6701, pp. 670120–1 (2007)

  36. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \({O}(1/k^2)\). Sov. Math. Dokl. 27(2), 372–376 (1983)

    MATH  Google Scholar 

  37. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim Methods Softw. 9(1), 141–160 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimization. Math. Program. 110(2), 245–259 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. Osherovich, E., Shechtman, Y., Szameit, A., Sidorenko, P., Bullkich, E., Gazit, S., Shoham, S., Kley, E.B., Zibulevsky, M., Yavneh, I., et al.: Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11(5), 455–459 (2012)

    Google Scholar 

  40. Sanz, J.L.C.: Mathematical considerations for the problem of fourier transform phase retrieval from magnitude. SIAM J. Appl. Math. 45, 651–664 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  41. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    MATH  MathSciNet  Google Scholar 

  42. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. comput. Harmon. Anal. 30(1), 20–36 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  43. So, A.M.C.: Non-asymptotic performance analysis of the semidefinite relaxation detector in digital communications. Working paper (2010)

  44. So, A.M.C., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. 110(1), 93–110 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. So, A.M.-C., Ye, Y.: Probabilistic analysis of semidefinite relaxation detectors for multiple-input, multiple-output. Convex Optim. Signal Process. Commun. 166 (2010)

  46. Stewart, G.W.: Matrix Algorithms, Vol. II: Eigensystems. Society for Industrial Mathematics, Philadelphia (2001)

    Book  Google Scholar 

  47. Stewart, G.W., Sun, J.: Matrix perturbation theory. Academic Press, Boston (1990)

  48. Todd, M., Yildirim, E.A.: Sensitivity analysis in linear programming and semidefinite programming using interior-points methods. Math. Program. 90(2), 229–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  49. Toh, K.C., Todd, M.J., Tutuncu, R.H.: SDPT3—a MATLAB software package for semidefinite programming. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  50. Voroninski, V.: A comparison between the phaselift and phasecut algorithms. Working paper (2012)

  51. Waldspurger, I., Mallat, S.: Time-frequency phase recovery. Working paper (2012)

  52. Wen, Z., Goldfarb, D., Scheinberg, K.: Block coordinate descent methods for semidefinite programming. In: Anjos, M., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 533–564. Springer (2012)

  53. Yildirim, E.A.: An interior-point perspective on sensitivity analysis in semidefinite programming. Math. Oper. Res. 28(4), 649–676 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16(3), 871–890 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Richard Baraniuk, Emmanuel Candès, Rodolphe Jenatton, Amit Singer and Vlad Voroninski for very constructive comments. In particular, Vlad Voroninski showed in [50] that the argument in the first version of this paper, proving that PhaseCutMod is tight when PhaseLift is, could be reversed under mild technical conditions and pointed out an error in our handling of sparsity constraints. AA would like to acknowledge support from a starting grant from the European Research Council (ERC project SIPA), and SM acknowledges support from ANR 10-BLAN-0126 and ERC Invariant-Class 320959 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre d’Aspremont.

Appendix: Technical lemmas

Appendix: Technical lemmas

We now prove two technical lemmas used in the proof of Theorem 1.

Lemma 3

Under the assumptions and notations of Theorem 1, we have

$$\begin{aligned} \Vert V_{PC}^{/\!\!/}-(Ax_0)(Ax_0)^*\Vert _2> 2C\Vert Ax_0\Vert _ 2\Vert b_\mathrm{n,PC}\Vert _2 \end{aligned}$$

Proof

We first give an upper bound of \(\Vert V_{PC}-V_{PC}^{/\!\!/}\Vert _2\). We use the Cauchy–Schwarz inequality: for every positive matrix \(X\) and all \(x,y, |x^*Xy|\le \sqrt{x^*Xx}\sqrt{y^*Xy}\). Let \(\{f_i\}\) be an hermitian base of \(\mathrm{range}(A)\) diagonalizing \(V_{PC}^{/\!\!/}\) and \(\{g_i\}\) an hermitian base of \(\mathrm{range}(A)^\perp \) diagonalizing \(V_{PC}^\perp \). As \(\{f_i\}\cap \{g_i\}\) is an hermitian base of \({\mathbb {C}}^n\), we have

$$\begin{aligned} \Vert V_{PC}-V_{PC}^{/\!\!/}\Vert _2^2&=\underset{i,i'}{\sum }|f_i^*(V_{PC}-V_{PC}^ {/\!\!/})f_{i'}|^2+\underset{i,j}{\sum }|f_i^*(V_{PC}-V_{PC}^{/\!\!/})g_j|^2\nonumber \\&\,\,\,\,\,+\underset{i,j}{\sum }|g_j^*(V_{PC}-V_{PC}^{/\!\!/})f_i|^2+ \underset{j,j'}{\sum }|g_j^*(V_{PC}-V_{PC}^{/\!\!/})g_{j'}|^2\nonumber \\&=2\underset{i,j}{\sum }|f_i^*(V_{PC})g_j|^2+\underset{i}{\sum }|g_i^*(V_{PC}^\perp ) g_i|^2\nonumber \\&\le 2\underset{i,j}{\sum }|f_i^*(V_{PC})f_i\Vert g_j^*(V_{PC})g_j|+\left( \underset{i}{ \sum } g_i^*(V_{PC}^\perp )g_i\right) ^2\nonumber \\&=2\mathbf{Tr}V_{PC}^{/\!\!/}\mathbf{Tr}V_{PC}^\perp +(\mathbf{Tr}V_{PC}^\perp )^2\nonumber \\&\le \left( \sqrt{2}\sqrt{\mathbf{Tr}V_{PC}^{/\!\!/}}\sqrt{\mathbf{Tr}V_{PC}^\perp }+ \mathbf{Tr}V_{PC}^\perp \right) ^2 \end{aligned}$$
(21)

Let us now bound \(\mathbf{Tr}V_{PC}^\perp \). We first note that \(\mathbf{Tr}V_{PC}^\perp =\mathbf{Tr}((\mathbf{I}-AA^\dag )V_{PC}(\mathbf{I}-AA^\dag ))=\mathbf{Tr}(V_{PC}(\mathbf{I}-AA^\dag ))=d_1(V_{PC},\mathcal {F})\) (according to Lemma 2). Let \(u\in {\mathbb {C}}^n\) be such that, for all \(i\), \(|u_i|=1\) and \((Ax_0)_i=u_i|Ax_0|_i\). We set \(b=|Ax_0|+b_\mathrm{n,PC}\) and \(V=(b\times u)(b\times u)^*\). As \(V\in \mathbf{H}_n^+\cap \mathcal {H}_b\) and \(V_{PC}\) minimizes (13),

$$\begin{aligned} \mathbf{Tr}V_{PC}^\perp&= d_1(V_{PC},\mathcal {F})\le d_1(V,\mathcal {F})=d_1((Ax_0+b_\mathrm{n,PC}u)(Ax_0+b_\mathrm{n,PC}u)^*,\mathcal {F})\nonumber \\&= d_1((b_\mathrm{n,PC}u)(b_\mathrm{n,PC}u)^*,\mathcal {F})\nonumber \\&\le \Vert (b_\mathrm{n,PC}u)(b_\mathrm{n,PC}u)^*\Vert _1=\mathbf{Tr}(b_\mathrm{n,PC}u)(b_\mathrm{n,PC}u)^*=\Vert b_\mathrm{n,PC}\Vert _2^2 \end{aligned}$$

We also have \(\mathbf{Tr}V_{PC}^{/\!\!/}=\mathbf{Tr}V_{PC}-\mathbf{Tr}V_{PC}^\perp \). This equality comes from the fact that, if \(\{f_i\}\) is an hermitian base of \(\mathrm{range}(A)\) and \(\{g_i\}\) an hermitian base of \(\mathrm{range}(A)^\perp \), then

$$\begin{aligned} \mathbf{Tr}V_{PC}&= \underset{i}{\sum }f_iV_{PC}f_i^*+\underset{i}{\sum }g_iV_{PC}g_i^*= \underset{i}{\sum }f_iV_{PC}^{/\!\!/}f_i^*+\underset{i}{\sum }g_iV_{PC}^\perp g_i^*\\&= \mathbf{Tr}V_{PC}^{/\!\!/}+\mathbf{Tr}V_{PC}^\perp \end{aligned}$$

As \(V_{PC}^\perp \succeq 0\), \(\mathbf{Tr}V_{PC}^{/\!\!/}\le \mathbf{Tr}V_{PC}=\Vert |Ax_0|+b_\mathrm{n,PC}\Vert _2^2\) and, by combining this with relations (21) and (22), we get

$$\begin{aligned} \Vert V_{PC}-V_{PC}^{/\!\!/}\Vert _2&\le \sqrt{2}\Vert |Ax_0|+b_\mathrm{n,PC}\Vert _2\Vert b_\mathrm{n,PC}\Vert _2+\Vert b_\mathrm{n,PC}\Vert _2^2\\&\le \sqrt{2}\Vert Ax_0\Vert _2\Vert b_\mathrm{n,PC}\Vert _2+(1+\sqrt{2})\Vert b_\mathrm{n,PC}\Vert _2^2 \end{aligned}$$

And, by reminding that we assumed \(\Vert b_\mathrm{n,PC}\Vert _2\le \Vert Ax_0\Vert _2\),

$$\begin{aligned} \Vert V_{PC}^{/\!\!/}-(Ax_0)(Ax_0)^*\Vert _2&\ge \Vert V_{PC}-(Ax_0)(Ax_0)^*\Vert _2- \Vert V_{PC}^{/\!\!/}-V_{PC}\Vert _2\\&> D\Vert Ax_0\Vert _2\Vert b_\mathrm{n,PC}\Vert _2-\sqrt{2}\Vert Ax_0\Vert _2\Vert b_\mathrm{n,PC} \Vert _2\\&\quad -(1+\sqrt{2})\Vert b_\mathrm{n,PC}\Vert _2^2\\&\ge (D-2\sqrt{2}-1)\Vert Ax_0\Vert _2\Vert b_\mathrm{n,PC}\Vert _2=2C\Vert Ax_0\Vert _2\Vert b_\mathrm{n,PC}\Vert _2 \end{aligned}$$

which concludes the proof.\(\square \)

Lemma 4

Under the assumptions and notations of Theorem 1, we have \(\Vert b_\mathrm{n,PL}\Vert _2\le 2\Vert b_\mathrm{n,PC}\Vert \).

Proof

Let \(e_i\) be the \(i\)-th vector of \({\mathbb {C}}^n\)’s canonical base. We set \(e_i=f_i+g_i\) where \(f_i\in \mathrm{range}(A)\) and \(g_i\in \mathrm{range}(A)^\perp \).

$$\begin{aligned} V_{PC\,ii}&=e_i^*V_{PC}e_i\\&=f_i^*V_{PC}^{/\!\!/}f_i+2\mathrm{Re }(f_i^*V_{PC}g_i)+g_i^*V_{PC}^\perp g_i\\&=V_{PC\,ii}^{/\!\!/}+2\mathrm{Re }(f_i^*V_{PC}g_i)+V_{PC\,ii}^\perp \end{aligned}$$

Because \(|f_i^*V_{PC}g_i|\le \sqrt{f_i^*V_{PC}f_i}\sqrt{g_i^*V_{PC}g_i}=\sqrt{V_{PC\,ii}^{/\!\!/}}\sqrt{V_{PC\,ii}^\perp }\),

$$\begin{aligned} \left( \sqrt{V_{PC\,ii}^{/\!\!/}}-\sqrt{V_{PC\,ii}^\perp }\right) ^2\le V_{PC\,ii}\le \left( \sqrt{V_{PC\,ii}^{/\!\!/}}+\sqrt{V_{PC\,ii}^\perp }\right) ^2\\ \quad \Rightarrow \sqrt{V_{PC\,ii}^{/\!\!/}}-\sqrt{V_{PC\,ii}^\perp }\le \sqrt{V_{PC\,ii}}\le \sqrt{V_{PC\,ii}^{/\!\!/}}+\sqrt{V_{PC\,ii}^\perp } \end{aligned}$$

So

$$\begin{aligned} |b_{\mathrm{n,PL,}i}|&=|\sqrt{V_{PC\,ii}^{/\!\!/}}-|Ax_0|_i|\\&\le |\sqrt{V_{PC\,ii}^{/\!\!/}}-\sqrt{V_{PC\,ii}}|+|\sqrt{V_{PC\,ii}}-|Ax_0|_i|\\&\le \sqrt{V_{PC\,ii}^\perp }+b_{\mathrm{n,PC,}i} \end{aligned}$$

and, by (22),

$$\begin{aligned} \Vert b_\mathrm{n,PL}\Vert _2&\le \left\| \left\{ \sqrt{V_{PC\,ii}^\perp }\right\} _i\right\| _2+\Vert b_\mathrm{n,PC}\Vert _2\\&=\sqrt{\mathbf{Tr}V_{PC}^\perp }+\Vert b_\mathrm{n,PC}\Vert _2\le 2\Vert b_\mathrm{n,PC}\Vert _2 \end{aligned}$$

which concludes the proof.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldspurger, I., d’Aspremont, A. & Mallat, S. Phase recovery, MaxCut and complex semidefinite programming. Math. Program. 149, 47–81 (2015). https://doi.org/10.1007/s10107-013-0738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0738-9

Mathematics Subject Classification (2000)

Navigation