Skip to main content
Log in

Convex optimization for the planted k-disjoint-clique problem

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the \(k\) -disjoint-clique problem. The input is an undirected graph \(G\) in which the nodes represent data items, and edges indicate a similarity between the corresponding items. The problem is to find within the graph \(k\) disjoint cliques that cover the maximum number of nodes of \(G\). This problem may be understood as a general way to pose the classical ‘clustering’ problem. In clustering, one is given data items and a distance function, and one wishes to partition the data into disjoint clusters of data items, such that the items in each cluster are close to each other. Our formulation additionally allows ‘noise’ nodes to be present in the input data that are not part of any of the cliques. The \(k\)-disjoint-clique problem is NP-hard, but we show that a convex relaxation can solve it in polynomial time for input instances constructed in a certain way. The input instances for which our algorithm finds the optimal solution consist of \(k\) disjoint large cliques (called ‘planted cliques’) that are then obscured by noise edges inserted either at random or by an adversary, as well as additional nodes not belonging to any of the \(k\) planted cliques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Rand. Struct. Alg. 13, 457–466 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ames, B., Vavasis, S.: Nuclear norm minimization for the planted clique and biclique problems. Math. Program. 129(1), 1–21 (2011)

    Article  MathSciNet  Google Scholar 

  3. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71, chapter 2. Springer, Heidelberg (2006)

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  6. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chandrasekaran, V., Sanghavi, S., Parrilo, P.A., Willsky, A.S.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optimiz. 21(2), 572–596 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a semirandom raph. Rand. Struct. Alg. 16(2), 195–208 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combinatorica 1(3), 233–241 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co, New York (1979)

  11. Geman, S.: A limit theorem for the norm of random matrices. Ann. Probab. 8(2), 252–261 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1962)

    Article  MathSciNet  Google Scholar 

  14. Jalali, A., Chen, Y., Sanghavi, S., Xu, H.: Clustering partially observed graphs via convex optimization. Arxiv preprint arXiv:1104.4803 (2011)

    Google Scholar 

  15. Mitzenmacher, M., Upfal, E.: Probability and computing. Cambridge University Press, Cambridge, Randomized algorithms and probabilistic analysis (2005)

  16. Ostrovsky, R., Rabani, Y., Schulman, L., Swamy, C.: The effectiveness of Lloyd-type methods for the k-means problem. In: Proceedings of the 47st Annual IEEE Symposium on the Foundations of Computer Science (2006)

  17. Oymak, S., Hassibi, B.: Finding dense clusters via “low rank + sparse” decomposition. Arxiv, preprint arXiv:1104.5186 (2011)

  18. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhao, X.Y., Sun, D., Toh, K.C.: A newton-cg augmented lagrangian method for semidefinite programming. SIAM J. Optimiz. 20(4), 1737–1765 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan P. W. Ames.

Additional information

Supported in part by a Discovery Grant and Postgraduate Scholarship (Doctoral) from NSERC (Natural Science and Engineering Research Council of Canada), MITACS (Mathematics of Information Technology and Complex Systems), and the US Air Force Office of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ames, B.P.W., Vavasis, S.A. Convex optimization for the planted k-disjoint-clique problem. Math. Program. 143, 299–337 (2014). https://doi.org/10.1007/s10107-013-0733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0733-1

Mathematics Subject Classification

Navigation