Skip to main content
Log in

Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as an exact semi-definite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region problem having extra linear constraints. This paper shows that two useful and powerful features of the classical trust-region problem continue to hold for an extended trust-region problem with linear inequality constraints under a new dimension condition. First, we establish that the class of extended trust-region problems has an exact SDP-relaxation, which holds without the Slater constraint qualification. This is achieved by proving that a system of quadratic and affine functions involved in the model satisfies a range-convexity whenever the dimension condition is fulfilled. Second, we show that the dimension condition together with the Slater condition ensures that a set of combined first and second-order Lagrange multiplier conditions is necessary and sufficient for global optimality of the extended trust-region problem and consequently for strong duality. Through simple examples we also provide an insightful account of our development from SDP-relaxation to strong duality. Finally, we show that the dimension condition is easily satisfied for the extended trust-region model that arises from the reformulation of a robust least squares problem (LSP) as well as a robust second order cone programming model problem (SOCP) as an equivalent semi-definite linear programming problem. This leads us to conclude that, under mild assumptions, solving a robust LSP or SOCP under matrix-norm uncertainty or polyhedral uncertainty is equivalent to solving a semi-definite linear programming problem and so, their solutions can be validated in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. Ser. B 95, 351–370 (2003)

    Article  MathSciNet  Google Scholar 

  2. Burer, S., Anstreicher, K.M.: Second-order cone constraints for extended trust-region problems. Preprint, Optimization online, March (2011)

  3. Beck, A., Eldar, Y.C.: Strong duality in nonconvex quadratic optimization with two quadratic constraints. SIAM J. Optim. 17, 844–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A.: Convexity properties associated with nonconvex quadratic matrix functions and applications to quadratic programming. J. Optim. Theory Appl. 142, 1–29 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications. SIAM-MPS, Philadelphia (2000)

    Google Scholar 

  6. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics (2009)

  7. Ben-Tal, A., Nemirovski, A., Roos, C.: Robust solutions of uncertain quadratic and conic quadratic problems. SIAM J. Optim. 13(2), 535–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsimas, D., Pachamanova, D., Sim, M.: Robust linear optimization under general norms. Oper. Res. Lett. 32, 510–516 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS-SIAM Series in Optimization, SIAM, Philadelphia, PA (2000)

  11. Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)

    Article  MathSciNet  Google Scholar 

  12. Fradkov, A.L., Yakubovich, V.A.: The S-procedure and duality relations in nonconvex problems of quadratic programming. Leningrad, Russia. Vestn. Leningr. Univ. 6, 101–109 (1979)

    MATH  Google Scholar 

  13. El Ghaoui, L., Lebret, H.: Robust solution to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeyakumar, V., Lee, G.M., Li, G.Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim. 20(2), 983–1001 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeyakumar, V., Li, G.: Strong duality in robust convex programming: complete characterizations. SIAM J. Optim. 20, 3384–3407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeyakumar, V., Li, G.: Exact SDP Relaxations for classes of nonlinear semidefinite programming problems. Oper. Res. Lett. (2012). doi:10.1016/j.orl.2012.09.006

  17. Jeyakumar, V., Huy, N.Q., Li, G.: Necessary and sufficient conditions for S-lemma and nonconvex quadratic optimization. Optim. Eng. 10, 491–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeyakumar, V., Li, G.: A robust von-Neumann minimax theorem for zero-sum games under bounded payoff uncertainty. Oper. Res. Lett. 39(2), 109–114 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions. Math. Program. Ser. A 110, 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeyakumar, V., Wolkowicz, H.: Zero duality gaps in infinite-dimensional programming. J. Optim. Theory Appl. 67, 87–108 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. More, J.J.: Generalizations of the trust region subproblem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  22. Pardalos, P., Romeijn, H.: Handbook in Global Optimization, vol. 2. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  23. Peng, J.M., Yuan, Y.X.: Optimality conditions for the minimization of a quadratic with two quadratic constraints. SIAM J. Optim. 7, 579–594 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pólik, I., Terlaky, T.: A survey of the S-Lemma. SIAM Rev. 49, 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Polyak, B.T.: Convexity of quadratic transformation and its use in control and optimization. J. Optim. Theory Appl. 99, 563–583 (1998)

    Article  MathSciNet  Google Scholar 

  26. Powell, M.J.D., Yuan, Y.: A trust region algorithm for equality constrained optimization. Math. Program. 49(91), 189–211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stern, R.J., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sturm, J.F., Zhang, S.Z.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yakubovich, Y.A.: The S-procedure in nonlinear control theory. Vestn. Leningr. Univ. 4(1), 62–77 (1971)

    Google Scholar 

  30. Ye, Y.Y., Zhang, S.Z.: New results of quadratic minimization. SIAM J. Optim. 14, 245–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, Y.X.: On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47, 53–63 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jeyakumar.

Additional information

The authors are grateful to the referees for their valuable suggestions and helpful comments which have contributed to the final preparation of the paper. Research was partially supported by a grant from the Australian Research Council.

Appendix: Technical results

Appendix: Technical results

For the sake of self-containment, in this Section, we provide known technical results on hidden convexity of quadratic systems, S-lemma and tractable classes of robust optimization.

1.1 Hidden convexity of quadratic systems

The basic and probably the most useful result on the joint-range convexity of homogeneous quadratic functions, known as Dine’s Theorem [11], states as follows:

Lemma 7.1

(Dine’s Theorem) [11] Let \(A_1, A_2\in S^n\). Then, the set \(\{(x^TA_1x,x^TA_2x)\!:\!x \in \mathbb{R }^n\}\) is convex.

Dine’s theorem is known to fail for three homogeneous in general. Polyak [25] established the following joint-range convexity result for three homogeneous quadratic functions under a positive definite condition on the matrices involved.

Lemma 7.2

(Polyak’s Lemma [25, Theorem 2.1]) Let \(n \ge 2\) and let \(A_1, A_2,A_3 \in S^n\). Suppose that there exist \(\gamma _1,\gamma _2,\gamma _3 \in \mathbb{R }\) such that \(\gamma _1 A_1+\gamma _2 A_2+\gamma _3A_3 \succ 0.\) Then the set \(\{(x^TA_1x,x^TA_2x,x^TA_3x):x \in \mathbb{R }^n\}\) is convex.

1.2 S-lemma and approximate S-lemma

Using Dine’s Theorem, Yakubovich (cf [24]) obtained the following fundamental \({S}\)-lemma which has played a key role in many areas of control and optimization.

Lemma 7.3

(\({S}\)-lemma [24]) Let \(A_1,A_2 \in S^{n},\,a_1,a_2 \in \mathbb{R }^n\) and \(\alpha _1,\alpha _2 \in \mathbb{R }\). Suppose that there exists \(x_0 \in \mathbb{R }^n\) such that \(x_0^TA_2x_0+a_2^Tx_0+\alpha _2<0\). Then the following statements are equivalent:

  1. (i)

    \(x^TA_2x+a_2^Tx+\alpha _2 \le 0 \Rightarrow x^TA_1x+a_1^Tx+\alpha _1 \ge 0\) ;

  2. (ii)

    \((\exists \lambda \ge 0) (\forall x \in \mathbb{R }^n) (x^TA_1x+a_1^Tx+\alpha _1 )+\lambda (x^TA_2x+a_2^Tx+\alpha _2 ) \ge 0.\)

For a homogeneous quadratic system with multiple convex quadratic constraints, Ben-Tal et al. [7] derived the following approximate S-lemma which provides an estimate between an associated quadratic optimization problem and its SDP relaxation.

Lemma 7.4

(Approximate S-lemma [7, Lemma A.6]) Let \(R,H_0,H_1,\ldots ,H_K\) be symmetric \((p \times p)\) matrices such that \(H_i \succeq 0,\,i=1,\ldots ,K\) and \(\sum _{k=0}^K\lambda _iH_i \succ 0,\) for some \(\lambda _i \ge 0, i=0,\ldots ,K\). Consider the following quadratically constrained quadratic problem

$$\begin{aligned} ({ QCQ}) \quad \max \limits _{y \in \mathbb{R }^p}\{y^TRy: y^TH_0y \le 1, y^TH_iy \le 1,\quad i=1,\ldots ,K\} \end{aligned}$$

and the semidefinite optimization problem

$$\begin{aligned} ({ SDP}) \quad \min \limits _{\mu _0,\ldots ,\mu _K \ge 0}\left\{ \sum _{i=0}^K \mu _i : \sum _{i=0}^K\mu _kH_k \succeq R\right\} . \end{aligned}$$

Then, \(\max ({ QCQ}) \le \min ({ SDP}) \le \rho ^2 \max ({ QCQ})\) where \(\rho =\sqrt{2\log (6 \sum _{i=1}^K\mathrm{rank}H_k)}.\)

1.3 Tractable classes of robust optimization problems

The following tractable classes of robust optimization problems are known.

1.3.1 Robust least squares problems [3, 13]

Consider the following robust least squares programming problem:

$$\begin{aligned} ({ RLSP}) \quad \displaystyle \min \limits _{x \in \mathbb{R }^n}\max \limits _{(A,a) \in \mathcal{U }}&\Vert Ax-a\Vert ^2, \end{aligned}$$

where \(\mathcal{U }\subseteq \mathbb{R }^{k \times n} \times \mathbb{R }^{k}= \mathbb{R }^{k \times (n+1)}\), is an uncertainty set. Then, (RLSP) can be equivalently rewritten as a semidefinite programming problem under the following two cases:

  1. (i)

    \(\mathcal{U }\) is an ellipsoid (see [13]), i.e., \(\mathcal{U }=\{(A^{(0)},a^{(0)}) + \Delta : \Delta \in \mathbb{R }^{k \times (n+1)}, \Vert \Delta -\overline{\Delta }\Vert _F \le \rho \}\);

  2. (ii)

    \(k \ge 2\) and \(\mathcal{U }\) is the intersection of two ellipsoids (see [3]), i.e, \(\mathcal{U }= \{(A^{(0)},a^{(0)}) + \Delta : \Delta \in \mathbb{R }^{k \times (n+1)}, \, \mathrm{Tr}(\Delta B_j \Delta ) \le \rho _j^2,\ j = 1,2\}\) where \(B_j \in S^{n \times n}\) satisfying \(\gamma _1 B_1+\gamma _2 B_2 \succ 0\) for some \(\gamma _1,\gamma _2 \ge 0\).

1.3.2 Robust second-order cone programming problems [4, 7]

Consider the following robust second order cone programming problem:

$$\begin{aligned} \begin{array}{lcl} ({ RSOCP}) &{} \min \limits _{x \in \mathbb{R }^n} &{} a^Tx \\ &{} \text{ s.t. } &{} \Vert B_ix-b_i\Vert \le d_i, \ \forall (B_i,b_i) \in \mathcal{U }_i,\quad i=1,\ldots ,m, \end{array} \end{aligned}$$

where \(\mathcal{U }_i\subseteq \mathbb{R }^{k_i \times n} \times \mathbb{R }^{k_i}= \mathbb{R }^{k_i \times (n+1)},\,i=1,\ldots ,m\), is an uncertainty set. Then, (RSOCP) can be equivalently rewritten as a semidefinite programming problem under the following two cases:

  1. (i)

    \(\mathcal{U }_i\) is an ellipsoid (see [7]), i.e., \(\mathcal{U }_i=\{(B_i^{(0)},b_i^{(0)}) + \Delta _i: \Delta _i \in \mathbb{R }^{k_i \times (n+1)}, \Vert \Delta _i-\overline{\Delta }_i\Vert _F \le \rho _i\}\);

  2. (ii)

    \(\mathcal{U }_i\) is the intersection of at most \(k\) many ellipsoids (see [4]), i.e, \(k_i=k\) with \(k \in \mathbb{N }\) and \(\mathcal{U }_i= \{(B_i^{(0)},b_i^{(0)}) + \Delta : \Delta \in \mathbb{R }^{k \times (n+1)}, \, \Vert C_j \Delta ^T\Vert _F^2 \le \rho _j^2,\ j = 1,\ldots ,k\}\), where \(C_j \in \mathbb{R }^{(n+1) \times (n+1)}\) such that there exist \(\mu _j \in \mathbb{R }\) such that \(\sum _{j=1}^k\mu _jC_j^TC_j \succ 0.\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyakumar, V., Li, G.Y. Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147, 171–206 (2014). https://doi.org/10.1007/s10107-013-0716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0716-2

Mathematics Subject Classification

Navigation