Skip to main content

Advertisement

Log in

Characterization of cervical tissue using Mueller matrix polarimetry

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The cervix is composed of layers of squamous epithelium and connective tissue. The main component of the cervical connective tissue is collagen, which has specific orientations in different parts of the cervix and provides mechanical strength. Cervical pathologies such as cervical intraepithelial neoplasia (CIN), cancer, pregnancy, and spontaneous preterm birth (sPTB) allow for structural remodeling of both squamous epithelium and connective tissue. Mueller matrix (MM) polarimetry is an optical imaging technique that uses polarized light to characterize the morphologic changes in pathological cervix. In this study, advances in MM polarimetry in characterizing cervical tissue and associated pathologies were reviewed. In particular, the basic structure of the MM polarimeter is described. The interaction of polarized light with cervical tissue in terms of polarimetric parameters such as depolarization and birefringence is discussed. The assessment of cervical pathologies including CIN, cancer, pregnancy, and sPTB with MM polarimetry and the underlying reasons that produce the contrast in optical imaging are outlined. The clinical implementation of MM polarimetry, especially the Müller polarimetry colposcope, is also discussed. Finally, the challenges for MM polarimetry in cervical clinics are also speculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olaniyan OB (2002) Validity of colposcopy in the diagnosis of early cervical neoplasia--a review. Afr J Reprod 6(3):59–69

    Google Scholar 

  2. Pierangelo A, Nazac A, Benali A, Validire P, Cohen H, Novikova T et al (2013) Polarimetric imaging of uterine cervix: a case study. Opti. Express 21(12):14120–14130

    Google Scholar 

  3. Lee HR, Saytashev I, Du Le VN, Mahendroo M, Ramella-Roman J, Novikova T (2021) Mueller matrix imaging for collagen scoring in mice model of pregnancy. Sci. Rep 11(15621)

  4. Ahmad I (2017) Review of the emerging role of optical polarimetry in characterization of pathological myocardium. J Biomed Opt 22(10):100901

    Google Scholar 

  5. Ahmad I, Gribble A, Ikram M, Pop M, Vitkin A (2016) Polarimetric assessment of healthy and radiofrequency ablated porcine myocardial tissue. J Biophotonics 9(7):750–759

    CAS  PubMed  Google Scholar 

  6. Ahmad I, Gribble A, Murtza I, Ikram M, Pop M, Vitkin A (2017) Polarization image segmentation of radiofrequency ablated porcine myocardial tissue. PLoS One 12(4):e0157173

    Google Scholar 

  7. Ahmad I, Ahmad M, Khan K, Ikram M (2016) Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues. Photodiagnosis Photodyn Ther 14:134–141

    PubMed  Google Scholar 

  8. Ahmad I, Khaliq A, Iqbal M, Khan S (2020) Mueller matrix polarimetry for characterization of skin tissue samples: a review. Photodiagnosis Photodyn Ther 30:101708

    CAS  PubMed  Google Scholar 

  9. Ahmad I, Ahmad M, Khan K, Ashraf S, Ahmad S, Ikram M (2015) Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J Biomed Opt 20(5):56012

    PubMed  Google Scholar 

  10. Ali Z, Mahmood T, Shahzad A, Iqbal M, Ahmad I (2022) Assessment of tissue pathology using optical polarimetry. Lasers Med Sci 37(3):1907–1919

    PubMed  Google Scholar 

  11. Vink MA, Bogaards JA, Van Kemenade FJ, De Melker HE, Meijer CJLM, Berkhof J (2013) Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time to preclinical cervical cancer from doubly censored national registry data. Am J Epidemiol 178(7):1161–1169

    PubMed  Google Scholar 

  12. Rehbinder J, Deby S, Haddad H, Teig H, Nazac A, Pierangelo A, Moreau F (2015) Diagnosis of uterine cervix cancer using Müller polarimetry: a comparison with histopathology in novel biophotonics techniques and applications III, A. Amelink and I. Vitkin, eds., Vol. 9540 of SPIE Proceedings (Optica Publishing Group), paper 95400W

  13. Zaffar M, Pradhan A (2020) Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl Opt 59(4):1237–1248

    CAS  PubMed  Google Scholar 

  14. Chue-Sang J, Bai Y, Stoff S, Gonzalez M, Holness N, Gomes J et al (2017) Use of Mueller matrix polarimetry and optical coherence tomography in the characterization of cervical collagen anisotropy. J Biomed Opt 22(08):086010

    PubMed  PubMed Central  Google Scholar 

  15. Wood MF, Ghosh N, Wallenburg MA, Li SH, Weisel RD, Wilson BC et al (2010) Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. J Biomedical Optics. 15(4):047009

    PubMed  Google Scholar 

  16. Lu S-Y, Chipman RA (1996) Interpretation of Mueller matrices based on polar decomposition. J Opt Soc Am 13(5):1106–1113

    Google Scholar 

  17. Liu W, Xiong J, Liu J, Zhu J, Hu J, Hou L et al (2021) Polarization multi-parametric imaging method for the inspection of cervix cell. Opt Commun 488:126846

    CAS  Google Scholar 

  18. Walker C, Mojares E, Del Río Hernández A (2018) Role of extracellular matrix in development and cancer progression. Int J Mol Sci 19(10):3028

    PubMed  PubMed Central  Google Scholar 

  19. Wilder-Smith P, Osann K, Hanna N, El Abbadi N, Brenner M, Messadi D et al (2004) In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy. Lasers Surg Med 35(2):96–103

    PubMed  Google Scholar 

  20. Kisseljov F, Sakharova O, Kondratjeva T (2008) Cellular and molecular biological aspects of cervical intraepithelial neoplasia. Int Rev Cell Mol Biol 271(C):35–95

    CAS  PubMed  Google Scholar 

  21. Fanjul-Vélez F, Arce-Diego JL (2010) Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle. Opt Lett 35(8):1163–1165

    PubMed  Google Scholar 

  22. Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R (2007) Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys J 92(9):3260–3274

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Narice BF, Green NH, MacNeil S, Anumba D (2016) Second harmonic generation microscopy reveals collagen fibres are more organised in the cervix of postmenopausal women. Reprod Biol Endocrinol 14:70

    PubMed  PubMed Central  Google Scholar 

  24. Kaniyala S, Yury M, Borisova E, Ivanov D, Zakharova O (2022) Types of spectroscopy and microscopy techniques for cancer diagnosis : a review. Lasers Med Sci 37(8):3067–3084

  25. Feltovich H, Hall TJ, Berghella V (2012) Beyond cervical length: emerging technologies for assessing the pregnant cervix. Am J Obstet Gynecol 207(5):345–354

    PubMed  PubMed Central  Google Scholar 

  26. Causin RL, de Freitas AJA, Filho CMTH, Dos Reis R, Reis RM, Marques MMC (2021) A systematic review of microrRNAs involved in cervical cancer progression. Cells. 10(3):668

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Berezhnyy I, Dogariu A (2004) Time-resolved Mueller matrix imaging polarimetry. Opt Express 12(19):4635–4649

    PubMed  Google Scholar 

  28. Zaffar M, Sahoo GR, Pradhan A (2020) Different orders of scattering through time-resolved Mueller matrix imaging estimates of pre-malignancy in human cervical tissues. Appl Opt 59(14):4286–4295

    CAS  PubMed  Google Scholar 

  29. Soni J, Purwar H, Lakhotia H, Chandel S, Banerjee C, Kumar U et al (2013) Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system. Opt Express 21(13):15475

    CAS  PubMed  Google Scholar 

  30. Yan S, Jacques SL, Ramella-Roman JC, Fang Q (2022) Graphics-processing-unit-accelerated Monte Carlo simulation of polarized light in complex three-dimensional media. J Biomed Opt 27(08):083015

    PubMed  PubMed Central  Google Scholar 

  31. Ortega-Quijano N, Fanjul-Vélez F, Arce-Diego JL (2015) Physically meaningful depolarization metric based on the differential Mueller matrix. Appl Opt 40(14):3280–3283

    Google Scholar 

  32. Cubián DP, Diego JLA, Rentmeesters R (2005) Characterization of depolarizing optical media by means of the entropy factor: application to biological tissues. Appl Opt 44(3):358–365

    Google Scholar 

  33. Anastasiadou M, De Martino A, Clement D, Liège F, Laude-Boulesteix B, Quang N et al (2008) Polarimetric imaging for the diagnosis of cervical cancer. Physica Status Solidi (C) Current Topics. Solid State is Phys 5(5):1423–1426

    CAS  Google Scholar 

  34. Maul H, Saade G, Garfield RE (2005) Prediction of term and preterm parturition and treatment monitoring by measurement of cervical cross-linked collagen using light-induced fluorescence. Acta Obstet Gynecol Scand 84(6):534–536

    PubMed  Google Scholar 

  35. Hou A, Wang X, Fan Y, Miao W, Dong Y, Tian X et al (2022) Polarimetry feature parameter deriving from Mueller matrix imaging and auto-diagnostic significance to distinguish HSIL and CSCC. J Innov Opt Health Sci 15(1):2142088

    Google Scholar 

  36. Pu Y, Jagtap J, Pradhan A, Alfano RR (2014) Spatial frequency analysis for detecting early stage of cancer in human cervical tissues. Technol Cancer Res 13(5):421–425

    Google Scholar 

  37. Zaffar M, Agarwal A, Pandey K, Pradhan A (2016) Spatial frequency analysis of mueller matrix images of cervical tissue sections. In: 13th international conference on fiber optics and photonics, OSA Technical Digest (online) (Optica Publishing Group) paper W2B.3

  38. Park J, Lindberg A, Vizet J, Rehbinder J, Gennet C, Vanel JC et al (2019) Cervical cancer diagnostics with a multispectral mueller polarimetric colposcope. In: clinical and preclinical optical diagnostics II, Vol. EB101 of SPIE Proceedings (Optica Publishing Group) paper 11073_9

  39. Khuong CPN, Quang DNH, Thanh HP, Nguyen L, Ngoc QN, Le Huynh D et al (2022) Rapid and efficient characterization of cervical collagen orientation using linearly polarized colposcopic images. J Innov Opt Health Sci 2241001

  40. Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R et al (2017) In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci Rep 7(1):2471

    PubMed  PubMed Central  Google Scholar 

  41. Rehbinder J, Vizet J, Park J, Ossikovski R, Vanel JC, Nazac A et al (2022) Depolarization imaging for fast and non-invasive monitoring of cervical microstructure remodeling in vivo during pregnancy. Sci Rep 12(1):12321

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Foxman EF, Petr J (2004) Use of the fetal fibronectin test in decisions to admit to hospital for preterm labor. Clin Chem 50(3):663–665

    CAS  PubMed  Google Scholar 

  43. Yao W, Gan Y, Myers KM, Vink JY, Wapner RJ, Hendon CP (2016) Collagen fiber orientation and dispersion in the upper cervix of non-pregnant and pregnant women. PLoS ONE. 288A(1):84–90

    Google Scholar 

  44. Chue-Sang J, Holness N, Gonzalez M, Greaves J, Saytashev I, Stoff S et al (2018) Use of Mueller matrix colposcopy in the characterization of cervical collagen anisotropy. J Biomed Opt 23(12):121605

    PubMed  PubMed Central  Google Scholar 

  45. Zork NM, Myers KM, Yoshida MK, Cremers S, Jiang H, Ananth CV et al (2017) A systematic evaluation of collagen cross-links in the human cervix. Am J Obstet Gynecol 212(3):321e1–321e8

    Google Scholar 

  46. Boonya-Ananta, T., Gonzalez, M., Le, V.N. Du, DeHoog, E., Paidas, M.J., Jayakumar, A., et al. (2022) A speculum free portable preterm imaging system. in: Proc. SPIE Polariz. Light Opt. Angular Momentum Biomed. Diagnostics, p. 199630A.

  47. Gonzalez, M., Roa, C., Jimenez, A., Gomez-Guevara, R., Le, V.N. Du, Novikova, T., et al. (2022) Machine learning powered Mueller matrix microscope for collagen and elastin visualization in the mouse cervix. in: Proc. SPIE Polariz. Light Opt. Angular Momentum Biomed. Diagnostics, p. 119630B.

  48. Alenin AS, Scott Tyo J (2015) Structured decomposition design of partial Mueller matrix polarimeters. J Opt Soc Am 32(7):1302–1312

    Google Scholar 

  49. Forward S, Gribble A, Alali S, Lindenmaier AA, Vitkin IA (2017) Flexible polarimetric probe for 3×3 Mueller matrix measurements of biological tissue. Sci Rep 7(1):1–12

    CAS  Google Scholar 

  50. Van Tien T, Quynh NN, Duc LH, Cat PNK, Linh HQ (2019) Detection and localization of the hemoglobin and collagen distribution of the uterine cervix. J Innov Opt Health Sci 12(4):1942006

    CAS  Google Scholar 

  51. Kupinski M, Boffety M, Ossikovski R, Pierangelo A, Rehbinder J, Vizet J et al (2019) Diagnostics of high grade cervical intraepithelial neoplasia with Mueller matrix polarimetry. in: Clinical and Preclinical Optical Diagnostics II, Vol. EB101 of SPIE Proceedings (Optica Publishing Group, 2019), paper 11075_8

  52. Rubin NA, D’Aversa G, Chevalier P, Shi Z, Chen WT, Capasso F (2019) Matrix Fourier optics enables a compact full-Stokes polarization camera. Science. 364(6448)

  53. Gallwas J, Jalilova A, Ladurner R, Kolben TM, Kolben T, Ditsch N et al (2017) Detection of cervical intraepithelial neoplasia by using optical coherence tomography in combination with microscopy. J Biomed Opt 22(1):016013

    Google Scholar 

  54. Tyo JS, Wang Z, Johnson SJ, Hoover BG (2010) Design and optimization of partial Mueller matrix polarimeters. Appl Opt 49(12):2326–2333

    PubMed  Google Scholar 

Download references

Acknowledgements

All inputs from Dr. Angelo Pierangelo are highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SK, MQ, AK, SA, IA

Data curation: SK, MQ, AK

Formal analysis: SK, MQ, SA, IA

Investigation: AK, SA

Methodology: AK, MQ, IA

Project administration: IA

Supervision: IA

Validation: MQ, AK, SA,

Visualization: MQ, AK, SA

Writing — original draft: SK, AK, SA, IA

Writing — review & editing: SK, MQ, AK, SA, IA

Corresponding author

Correspondence to Iftikhar Ahmad.

Ethics declarations

Ethics approval

This study was approved by the Ethical Review Committee of the Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Qadir, M., Khalid, A. et al. Characterization of cervical tissue using Mueller matrix polarimetry. Lasers Med Sci 38, 46 (2023). https://doi.org/10.1007/s10103-023-03712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03712-6

Keywords

Navigation