Skip to main content
Log in

Effects of photobiomodulation therapy on neuropathic pain in rats: evaluation of nociceptive mediators and infrared thermography

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Nerve injury induces release of peptides and upregulation of receptors such as substance P and transient receptor potential receptor V1 (TRPV1), which contribute to the development and maintenance of chronic pain. Photobiomodulation therapy (PBMT) is a nonpharmacological strategy that promotes tissue repair and reduces pain and inflammation. However, the molecular basis for PBMT effects on neuropathic pain is still unclear. We investigated the effects of PBMT on substance P, TRPV1, and superficial temperature change in a rodent model of neuropathic pain. We evaluated substance P and TRPV1 in dorsal root ganglia (DRG L4 to L6) at baseline, 14 days after chronic constriction injury (CCI) and after PBMT. We also assessed the superficial temperature of tarsal, metatarsal, tibia, and fibula regions before and after PBMT using infrared thermography. Substance P and TRPV1 levels increased in DRG of CCI rats compared to naive and sham rats and decreased after PBMT. Infrared thermography showed increased temperature of tarsal, metatarsal, tibia, and fibula regions in CCI rats, which was decreased after PBMT. There were no statistical differences between CCI rats with PBMT, sham, and naive rats in any assay. PBMT reduces nociceptive mediators and hind paw and leg’s temperature in a rodent model of neuropathic pain, suggesting that PBMT may play a modulatory role in thermoregulation, neurogenic inflammation, and thermal sensitivity in peripheral nerve injuries. Therefore, PBMT appears to be a valuable strategy for neuropathic pain treatment in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouhassira D, Lantéri-Minet M, Attal N, Laurent B, Touboul C (2008) Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136(3):380–387

    Article  Google Scholar 

  2. Ueda H (2006) Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 109(1-2):57–77

    Article  CAS  Google Scholar 

  3. Bennett GJ, Ochoa JL (1991) Thermographic observations on rats with experimental neuropathic pain. Pain 45(1):61–67

    Article  Google Scholar 

  4. Brioschi ML, Myaki AE, Colman D, Rastelli MM Jr, Macedo RAC (2002) Infrared thermal imaging in rats submitted to different models of sciatic nerve and branches injuries. J Korean Med Thermology 2:64–65

    Google Scholar 

  5. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52(1):77–92

    Article  CAS  Google Scholar 

  6. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. Bmj 348:f7656. https://doi.org/10.1136/bmj.f7656

    Article  PubMed  Google Scholar 

  7. Malmberg AB, Basbaum AI (1998) Partial sciatic nerve injury in the mouse as a model of neuropathic pain: behavioral and neuroanatomical correlates. Pain 76(1-2):215–222

    Article  CAS  Google Scholar 

  8. Noguchi K, Dubner R, De Leon M, Senba E, Ruda MA (1994) Axotomy induces preprotachykinin gene expression in a subpopulation of dorsal root ganglion neurons. J Neurosci Res 37(5):596–603

    Article  CAS  Google Scholar 

  9. Hudson LJ, Bevan S, Wotherspoon G, Gentry C, Fox A, Winter J (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13(11):2105–2114

    Article  CAS  Google Scholar 

  10. Matsuda M, Huh Y, Ji RR (2019) Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 33(1):131–139

    Article  Google Scholar 

  11. Adelson D, Lao L, Zhang G, Kim W, Marvizón JC (2009) Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers. Neuroscience 161(2):538–553

    Article  CAS  Google Scholar 

  12. Zhang H, Cang C-L, Kawasaki Y, Liang L-L, Zhang Y-Q, Ji R-R, Zhao Z-Q (2007) Neurokinin-1 receptor enhances trpv1 activity in primary sensory neurons via PKCε: a novel pathway for heat hyperalgesia. J Neurosci 27(44):12067–12077. https://doi.org/10.1523/jneurosci.0496-07.2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cavalli E, Mammana S, Nicoletti F, Bramanti P, Mazzon E (2019) The neuropathic pain: an overview of the current treatment and future therapeutic approaches. Int J Immunopathol Pharmacol 33(2058738419838383):2058738419838383

    PubMed  PubMed Central  Google Scholar 

  14. Guo SH, Lin JP, Huang LE, Yang Y, Chen CQ, Li NN, Su MY, Zhao X, Zhu SM, Yao YX (2019) Silencing of spinal Trpv1 attenuates neuropathic pain in rats by inhibiting CAMKII expression and ERK2 phosphorylation. Sci Rep 9(1):019–39184

    Article  CAS  Google Scholar 

  15. Teodoro FC, Tronco Júnior MF, Zampronio AR, Martini AC, Rae GA, Chichorro JG (2013) Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides 47(3):199–206

    Article  CAS  Google Scholar 

  16. Huang Z, Ma J, Chen J, Shen B, Pei F, Kraus VB (2015) The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis. Arthritis Res Ther 17(360):015–0882

    Google Scholar 

  17. de Andrade AL, Bossini PS, Parizotto NA (2016) Use of low level laser therapy to control neuropathic pain: a systematic review. J Photochem Photobiol B 164:36–42

    Article  CAS  Google Scholar 

  18. de Oliveira MD, Martinez dos Santos F, Evany de Oliveira M, de Britto LR, Benedito Dias Lemos J, Chacur M (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30(6):480–486

    Article  Google Scholar 

  19. Oliveira ME, Santos FM, Bonifácio RP, Freitas MF, Martins DO, Chacur M (2017) Low level laser therapy alters satellite glial cell expression and reverses nociceptive behavior in rats with neuropathic pain. Photochem Photobiol Sci 16(4):547–554

    Article  CAS  Google Scholar 

  20. Martins DO, Marques DP, Venega RAG, Chacur M (2020) Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immun Health 2:100040. https://doi.org/10.1016/j.bbih.2020.100040

    Article  Google Scholar 

  21. Pereira FC, Parisi JR, Maglioni CB, Machado GB, Barragán-Iglesias P, Silva JRT, Silva ML (2017) Antinociceptive effects of low-level laser therapy at 3 and 8 j/cm(2) in a rat model of postoperative pain: possible role of endogenous Opioids. Lasers Surg Med 49(9):844–851

    Article  Google Scholar 

  22. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5(2):58–62

    PubMed  PubMed Central  Google Scholar 

  23. Cotler HB, Chow RT, Hamblin MR, Carroll J (2015) The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2(5):9

    Article  Google Scholar 

  24. Graham ML, Prescott MJ (2015) The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur J Pharmacol 759:19–29

    Article  CAS  Google Scholar 

  25. Giardini AC, Dos Santos FM, da Silva JT, de Oliveira ME, Martins DO, Chacur M (2017) Neural mobilization treatment decreases glial cells and brain-derived neurotrophic factor expression in the central nervous system in rats with neuropathic pain induced by cci in rats. Pain Res Manag 2017:7429761. https://doi.org/10.1155/2017/7429761

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107

    Article  Google Scholar 

  27. Da Silva JT, Evangelista BG, Venega RAG, Oliveira ME, Chacur M (2017) Early and late behavioral changes in sciatic nerve injury may be modulated by nerve growth factor and substance P in rats: a chronic constriction injury long-term evaluation. J Biol Regul Homeost Agents 31(2):309–319

    PubMed  Google Scholar 

  28. Balbinot LF, Robinson CC, Achaval M, Zaro MA, Brioschi ML (2013) Repeatability of infrared plantar thermography in diabetes patients: a pilot study. J Diabetes Sci Technol 7(5):1130–1137

    Article  Google Scholar 

  29. Haddad DS, Brioschi ML, Baladi MG, Arita ES (2016) A new evaluation of heat distribution on facial skin surface by infrared thermography. Dentomaxillofac Radiol 45(4):19

    Article  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  31. Ellis A, Bennett DL (2013) Neuroinflammation and the generation of neuropathic pain. Br J Anaesth 111 (1):26-37

  32. Li F, Yang W, Jiang H, Guo C, Huang AJW, Hu H, Liu Q (2019) TRPV1 activity and substance P release are required for corneal cold nociception. Nat Commun 10(1):019–13536

    Article  CAS  Google Scholar 

  33. Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, Kuang R, Le A, Tamir R, Wang J, Youngblood B, Zhu D, Norman MH, Magal E, Treanor JJ, Louis JC (2007) The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci 27(13):3366–3374

    Article  CAS  Google Scholar 

  34. Gavva NR (2008) Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci 29(11):550–557

    Article  CAS  Google Scholar 

  35. Sacharuk VZ, Lovatel GA, Ilha J, Marcuzzo S, Pinho AS, Xavier LL, Zaro MA, Achaval M (2011) Thermographic evaluation of hind paw skin temperature and functional recovery of locomotion after sciatic nerve crush in rats. Clinics 66(7):1259–1266

    Article  Google Scholar 

  36. Bagavathiappan S, Philip J, Jayakumar T, Raj B, Rao PN, Varalakshmi M, Mohan V (2010) Correlation between plantar foot temperature and diabetic neuropathy: a case study by using an infrared thermal imaging technique. J Diabetes Sci Technol 4(6):1386–1392

    Article  Google Scholar 

  37. Bostock H, Campero M, Serra J, Ochoa JL (2005) Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients. Brain 128(9):2154–2163. https://doi.org/10.1093/brain/awh552

    Article  PubMed  CAS  Google Scholar 

  38. Pulst SM, Haller P (1981) Thermographic assessment of impaired sympathetic function in peripheral nerve injuries. J Neurol 226(1):35–42

    Article  CAS  Google Scholar 

  39. Cline MA, Ochoa J, Torebjörk HE (1989) Chronic hyperalgesia and skin warming caused by sensitized C nociceptors. Brain 112(Pt 3):621–647

    Article  Google Scholar 

  40. Bates D, Schultheis BC, Hanes MC, Jolly SM, Chakravarthy KV, Deer TR, Levy RM, Hunter CW (2019) A comprehensive algorithm for management of neuropathic pain. Pain Med 20(Suppl 1):S2–S12

    Article  Google Scholar 

  41. Nesioonpour S, Mokmeli S, Vojdani S, Mohtadi A, Akhondzadeh R, Behaeen K, Moosavi S, Hojjati S (2014) The effect of low-level laser on postoperative pain after tibial fracture surgery: a double-blind controlled randomized clinical trial. Anesth Pain Med 4(3)

Download references

Acknowledgments

We thank A. Aldred for technical assistance.

Funding

This study was supported by Sao Paulo Research Foundation FAPESP (2013/01274-7, 2012/05840-4, 2010/20026-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marucia Chacur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

All procedures were approved by the Institutional Animal Care Committee of the University of São Paulo (protocol number 150/95—book number 02/2010).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mara Evany de Oliveira and Joyce Teixeira Da Silva share the first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.E., Da Silva, J.T., Brioschi, M.L. et al. Effects of photobiomodulation therapy on neuropathic pain in rats: evaluation of nociceptive mediators and infrared thermography. Lasers Med Sci 36, 1461–1467 (2021). https://doi.org/10.1007/s10103-020-03187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03187-9

Keywords

Navigation