Skip to main content

Advertisement

Log in

Conditioned media from blue light-emitting diode–exposed fibroblasts have an anti-inflammatory effect in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We have previously reported the protective effects of blue light-emitting diode (BLED)–stimulated cell metabolites on cell injury. To further examine the effect of conditioned media (CM) derived from BLED (5 J/cm2)-exposed human normal fibroblasts (CMBL5) for clinical application, we have used the choline chloride and phenol red–free media and then concentrated CMBL5 using a centrifugal filter unit. The collected CMBL5-lower part (CMBL5-LO) has evaluated the inflammatory protein expression profile in LPS-stimulated RAW264.7 cells. Comprehensive metabolomic profiling of CMBL5-LO was carried out using hybrid tandem mass spectrometry. Treatment with CMBL5-LO showed the cytoprotective effect on apoptotic cell death, but rather increased apoptotic cells after treatment with CMBL5-upper part (CMBL5-UP). In addition, CMBL5-LO inhibited several chemo-attractants, including interleukin (IL)-6, macrophage inflammatory protein (MIP)-2, chemokine (C-C motif) ligand 5 (CCL5), granulocyte colony-stimulating factor (GCSF), and monocyte chemoattractant protein-1 (MCP-1) expression. Pro-inflammatory nitric oxide was decreased after CMBL5-LO treatment, but not by CMBL5-UP treatment. Interestingly, treatment with CMBL5-LO stimulated expression of heme oxygenase-1, indicating its anti-inflammatory property. Most endoplasmic reticulum (ER) stress proteins except for transcription factor C/EBP homologous protein (CHOP) were highly expressed after irradiation with BLED in cells. Further studies are needed to examine the precise mechanism by CMBL5-LO in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BLED :

blue light-emitting diode

CCL5 :

chemokine (C-C motif) ligand 5

CHOP :

transcription factor C/EBP homologous protein

CM :

conditioned medium

CMBL5 :

conditioned medium derived from BLED (5 J/cm2)–irradiated cells

CMBL5-LO :

CMBL5-lower part

CMBL5-UP :

CMBL5-upper part

DMEM :

Dulbecco’s modified Eagle medium

ER :

endoplasmic reticulum

ERK :

phospho-extracellular signal–regulated kinase

GCSF :

granulocyte colony-stimulating factor

HEPES :

hydroxyethyl piperazine ethane sulfonic acid

HMDB :

Human Metabolome Database

HO-1 :

heme oxygenase-1

IL-6 :

interleukin-6

IMDM :

Iscove’s modified Dulbecco’s medium

iNOS :

inducible nitric oxide synthase

IRE1α :

inositol-requiring 1α

LPS :

lipopolysaccharide

MAPK :

mitogen-activated protein kinase

MCP-1 :

monocyte chemoattractant protein-1

MIP-2 :

macrophage inflammatory protein-2

NO :

nitric oxide

OPLS-DA :

orthogonal projections to latent structures discriminant analysis

PCA :

principal component analysis

PDI :

protein disulfide isomerase

PERK :

pancreatic ER kinase

RLED :

red light-emitting diode

SFM :

serum-free media

UPLC :

ultra-performance liquid chromatography

References

  1. Gu M, Gao Z, Li X, Guo L, Lu T, Li Y, He X (2017) Conditioned medium of olfactory ensheathing cells promotes the functional recovery and axonal regeneration after contusive spinal cord injury. Brain Res 1654(Pt A):43–54. https://doi.org/10.1016/j.brainres.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  2. He N, Feng G, Li Y, Xu Y, Xie X, Wang H, Wang Y, Ou L, Pei X, Liu N, Li Z (2016) Embryonic stem cell preconditioned microenvironment suppresses tumorigenic properties in breast cancer. Stem Cell Res Ther 7(1):95. https://doi.org/10.1186/s13287-016-0360-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW (2016) Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 16(7):859–871. https://doi.org/10.1517/14712598.2016.1170804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mirabella T, Cilli M, Carlone S, Cancedda R, Gentili C (2011) Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials 32(15):3689–3699. https://doi.org/10.1016/j.biomaterials.2011.01.071

    Article  CAS  Google Scholar 

  5. Boomsma RA, Geenen DL (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One 7(4):e35685. https://doi.org/10.1371/journal.pone.0035685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kwon HM, Hur SM, Park KY, Kim CK, Kim YM, Kim HS, Shin HC, Won MH, Ha KS, Kwon YG, Lee DH, Kim YM (2014) Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. Vasc Pharmacol 63(1):19–28. https://doi.org/10.1016/j.vph.2014.06.004

    Article  CAS  Google Scholar 

  7. Fierro FA, Magner N, Beegle J, Dahlenburg H, Logan White J, Zhou P, Pepper K, Fury B, Coleal-Bergum DP, Bauer G, Gruenloh W, Annett G, Pifer C, Nolta JA (2019) Mesenchymal stem/stromal cells genetically engineered to produce vascular endothelial growth factor for revascularization in wound healing and ischemic conditions. Transfusion 59(S1):893–897. https://doi.org/10.1111/trf.14914

    Article  CAS  PubMed  Google Scholar 

  8. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24(2):121–128. https://doi.org/10.1089/pho.2006.24.121

    Article  CAS  PubMed  Google Scholar 

  9. Lim W, Lee S, Kim I, Chung M, Kim M, Lim H, Park J, Kim O, Choi H (2007) The anti-inflammatory mechanism of 635 nm light-emitting-diode irradiation compared with existing COX inhibitors. Lasers Surg Med 39(7):614–621. https://doi.org/10.1002/lsm.20533

    Article  PubMed  Google Scholar 

  10. Choi H, Lim W, Kim I, Kim J, Ko Y, Kwon H, Kim S, Kabir KM, Li X, Kim O, Lee Y, Kim S, Kim O (2012) Inflammatory cytokines are suppressed by light-emitting diode irradiation of P. gingivalis LPS-treated human gingival fibroblasts: inflammatory cytokine changes by LED irradiation. Lasers Med Sci 27(2):459–467. https://doi.org/10.1007/s10103-011-0971-5

    Article  PubMed  Google Scholar 

  11. Trelles MA, Allones I (2006) Red light-emitting diode (LED) therapy accelerates wound healing post-blepharoplasty and periocular laser ablative resurfacing. J Cosmet Laser Ther 8(1):39–42. https://doi.org/10.1080/14764170600607731

    Article  PubMed  Google Scholar 

  12. Corti L, Chiarion-Sileni V, Aversa S, Ponzoni A, D'Arcais R, Pagnutti S, Fiore D, Sotti G (2006) Treatment of chemotherapy-induced oral mucositis with light-emitting diode. Photomed Laser Surg 24(2):207–213. https://doi.org/10.1089/pho.2006.24.207

    Article  PubMed  Google Scholar 

  13. Ohara M, Fujikura T, Fujiwara H (2003) Augmentation of the inhibitory effect of blue light on the growth of B16 melanoma cells by riboflavin. Int J Oncol 22(6):1291–1295

    CAS  PubMed  Google Scholar 

  14. Ohara M, Kawashima Y, Kitajima S, Mitsuoka C, Watanabe H (2003) Blue light inhibits the growth of skin tumors in the v-Ha-ras transgenic mouse. Cancer Sci 94(2):205–209. https://doi.org/10.1111/j.1349-7006.2003.tb01420.x

    Article  CAS  PubMed  Google Scholar 

  15. Magni G, Tatini F, Bacci S, Paroli G, De Siena G, Cicchi R, Pavone FS, Pini R, Rossi F (2019) Blue LED light modulates inflammatory infiltrate and improves the healing of superficial wounds. Photodermatol Photoimmunol Photomed. https://doi.org/10.1111/phpp.12527

  16. Oh PS, Na KS, Hwang H, Jeong HS, Lim S, Sohn MH, Jeong HJ (2015) Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling. J Photochem Photobiol B 142:197–203. https://doi.org/10.1016/j.jphotobiol.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  17. Oh PS, Hwang H, Jeong HS, Kwon J, Kim HS, Kim M, Lim S, Sohn MH, Jeong HJ (2016) Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy. Int J Biochem Cell Biol 70:13–22. https://doi.org/10.1016/j.biocel.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Oh PS, Kim HS, Kim EM, Hwang H, Ryu HH, Lim S, Sohn MH, Jeong HJ (2017) Inhibitory effect of blue light emitting diode on migration and invasion of cancer cells. J Cell Physiol 232(12):3444–3453. https://doi.org/10.1002/jcp.25805

    Article  CAS  PubMed  Google Scholar 

  19. Oh PS, Kim EM, Kim M, Kim IS, Han YH, Lim S, Sohn MH, Ko MH, Jeong HJ (2018) Protective effect of BLED-exposed conditioned media on cell injury. Photochem Photobiol 94(3):583–588. https://doi.org/10.1111/php.12887

    Article  CAS  PubMed  Google Scholar 

  20. Wang N, Liu W, Zheng Y, Wang S, Yang B, Li M, Song J, Zhang F, Zhang X, Wang Q, Wang Z (2018) CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-kappaB/SOX4 signaling. Cell Death Dis 9(9):880. https://doi.org/10.1038/s41419-018-0876-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bosca L, Zeini M, Traves PG, Hortelano S (2005) Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208(2):249–258. https://doi.org/10.1016/j.tox.2004.11.035

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A (2006) Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281(30):21362–21368. https://doi.org/10.1074/jbc.M600504200

    Article  CAS  PubMed  Google Scholar 

  23. Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2):85–94. https://doi.org/10.1016/s0898-6568(00)00149-2

    Article  CAS  PubMed  Google Scholar 

  24. Chen CC, Lin MW, Liang CJ, Wang SH (2016) The anti-inflammatory effects and mechanisms of Eupafolin in lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. PLoS One 11(7):e0158662. https://doi.org/10.1371/journal.pone.0158662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balla J, Jacob HS, Balla G, Nath K, Eaton JW, Vercellotti GM (1993) Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci U S A 90(20):9285–9289. https://doi.org/10.1073/pnas.90.20.9285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kapturczak MH, Wasserfall C, Brusko T, Campbell-Thompson M, Ellis TM, Atkinson MA, Agarwal A (2004) Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol 165(3):1045–1053. https://doi.org/10.1016/S0002-9440(10)63365-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mejia EM, Nguyen H, Hatch GM (2014) Mammalian cardiolipin biosynthesis. Chem Phys Lipids 179:11–16. https://doi.org/10.1016/j.chemphyslip.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101(5):451–454. https://doi.org/10.1016/s0092-8674(00)80855-7

    Article  CAS  PubMed  Google Scholar 

  29. Xie Y, Ye S, Zhang J, He M, Dong C, Tu W, Liu P, Shao C (2016) Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells. Sci Rep 6:38832. https://doi.org/10.1038/srep38832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03932595) and grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare (HI15C1529).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Jeong Jeong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, PS., Kim, EM., Lim, S. et al. Conditioned media from blue light-emitting diode–exposed fibroblasts have an anti-inflammatory effect in vitro. Lasers Med Sci 36, 99–109 (2021). https://doi.org/10.1007/s10103-020-03018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03018-x

Keywords

Navigation