Skip to main content

Advertisement

Log in

Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation therapy (PBMT) using a light-emitting diode (LED) has been employed for various photomedicine studies. The aim of this study was to determine the effects of a high-intensity red LED on the proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs) and the related mechanism. BMSCs were subjected to high-intensity red LED (LZ1-00R205 Deep Red LED) irradiations for 0 to 40 s with energy densities ranging from 0 to 8 J/cm2. The distance from the LED to the cell layer was 40 mm. The spot size on the target was 4 cm2. Cell proliferation was measured at 3, 24, 48, and 72 h. The effects of LED irradiation on osteogenic differentiation and mineralization were examined with a particular focus on the Wnt/β-catenin signaling pathway. The high-intensity red LED irradiations did not alter BMSC proliferation after 72 h. LED exposure of 6 J/cm2 (30 s) led to significant enhancements of osteogenic differentiation and mineralization. Additionally, the high-intensity LED irradiation induced activation of Wnt/β-catenin. The effects of the high-intensity LED irradiation on BMSC osteogenic differentiation and mineralization were suppressed by treatment with the Wnt/β-catenin inhibitor XAV939. P < 0.05 was considered significant. The results indicate that high-intensity red LED irradiation increases BMSC osteogenic differentiation and mineralization via Wnt/β-catenin activation. Therefore, short duration irradiation with a portable high-intensity LED may be used as a potential approach in hard tissue regeneration therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee RH, Kim B, Choi I et al (2004) Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 14:311–324. https://doi.org/10.1159/000080341

    Article  CAS  PubMed  Google Scholar 

  2. Mohammadi Z, Afshari JT, Keramati MR et al (2015) Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells. Iran J Basic Med Sci 18:259–266

    PubMed  PubMed Central  Google Scholar 

  3. Cui GA, Wang YY, Li CN et al (2016) Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: a meta-analysis. Exp Ther Med 12:3390–3400. https://doi.org/10.3892/etm.2016.3791

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laura DG, Miriam G, Marco V et al (2016) Treatment of Achilles tendinopathy with autologous adipose-derived stromal vascular fraction : results of a randomized prospective clinical trial. Orthop J Sport Med 4(7,suppl4):2259. https://doi.org/10.1177/2325967116S00128

    Article  Google Scholar 

  5. Bartold PM (2006) Structure of periodontal tissues in health and disease. Periodontol 40(1):7–10. https://doi.org/10.1111/j.1600-0757.2005.00141

    Article  Google Scholar 

  6. Mombelli A, Lang NP (2000) The diagnosis and treatment of peri-implantitis. Evidence for a microbial cause of peri-implant infections. Periodontology 17:63–76. https://doi.org/10.1111/j.1600-0757.1998.tb00124

    Article  Google Scholar 

  7. Pontoriero R, Tonelli MP, Carnevale G et al (1994) Experimentally induced peri-implant mucositis. A clinical study in humans. Clin Oral Implants Res 5(4):254–259. https://doi.org/10.1034/j.1600-0501.1994.050409

    Article  CAS  PubMed  Google Scholar 

  8. Zheng C, Chen J, Liu S et al (2019) Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 11:23. https://doi.org/10.1038/s41368-019-0060-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouvet-Gerbettaz S, Merigo E, Rocca JP et al (2009) Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers Surg Med 41(4):291–297. https://doi.org/10.1002/lsm.20759

    Article  PubMed  Google Scholar 

  10. Yuan Y, Yan G, Gong R et al (2017) Effects of blue light emitting diode irradiation on the proliferation, apoptosis and differentiation of bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem 43(1):237–246. https://doi.org/10.1159/000480344

    Article  CAS  PubMed  Google Scholar 

  11. Anders J, Lanzafame R, Arany P et al (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33(4):183–184. https://doi.org/10.1089/pho.2015.9848

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hamblin MR (2016) Photobiomodulation or low-level laser therapy. J Biophotonics 9(11–12):1122–1124. https://doi.org/10.1002/jbio.201670113

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eriksson AR, Albrektsson T et al (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50(1):101–107. https://doi.org/10.1016/0022-3913(83)90174-9

    Article  CAS  PubMed  Google Scholar 

  14. Feng L, Steven J, Doru A et al (2010) Lasers, stem cells, and COPD. J Transl Med 8:16. https://doi.org/10.1186/1479-5876-8-16

    Article  CAS  Google Scholar 

  15. Cobb CM (2006) Lasers in periodontics: a review of the literature. J Periodontol 77(4):545–564

    Article  CAS  Google Scholar 

  16. Matys J, Świder K, Grzech-Leśniak K et al (2019) Photobiomodulation by a 635nm diode laser on peri-implant bone: primary and secondary stability and bone density analysis-a randomized clinical trial. Biomed Res Int 2019:2785302. https://doi.org/10.1155/2019/2785302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang D, Yi W, Wang E et al (2016) Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci Rep 6:37370. https://doi.org/10.1038/srep37370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamauchi N, Taguchi Y, Kato H et al (2018) High-power, red-light-emitting diode irradiation enhances proliferation, osteogenic differentiation, and mineralization of human periodontal ligament stem cells via ERK signaling pathway. J Periodontol 89(3):351–360. https://doi.org/10.1002/JPER.17-0365

    Article  CAS  PubMed  Google Scholar 

  19. Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(S1):S-157–S-165

    Article  CAS  Google Scholar 

  20. Rahiotis C, Patsouri K, Silikas N et al (2010) Curing efficiency of high-intensity light-emitting diode (LED) devices. J Oral Sci 52(2):187–195

    Article  Google Scholar 

  21. Gough NR (2012) Wnt and beta-catenin signaling in development and disease. Sci Signal 5(206):eg2. https://doi.org/10.1126/scisignal.2002806

    Article  PubMed  Google Scholar 

  22. Chen Y, Whetstone HC, Lin AC et al (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 4(7):1216–1229. https://doi.org/10.1371/journal.pmed.0040249

    Article  CAS  Google Scholar 

  23. Yang F, Yang D, Tu J et al (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991

    Article  CAS  Google Scholar 

  24. Han L, Liu B, Chen X et al (2018) Activation of Wnt/β-catenin signaling is involved in hair growth-promoting effect of 655-nm red light and LED in in vitro culture model. Lasers Med Sci 33(3):637–645. https://doi.org/10.1007/s10103-018-2455-3

    Article  PubMed  Google Scholar 

  25. Hu Y, Chen Y, Lin M et al (2013) Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci 54(1):141–154. https://doi.org/10.1167/iovs.12-10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Umeda M, Tsuno A, Okagami Y et al (2011) Bactericidal effects of a high intensity, red light-emitting diode on two periodontopathic bacteria in antimicrobial photodynamic therapy in vitro. J Investig Clin Dent 2(4):268–274. https://doi.org/10.1111/j.2041-1626.2011.00071

    Article  PubMed  Google Scholar 

  27. Peng F, Wu H, Zheng Y et al (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27(3):645–653

    Article  Google Scholar 

  28. Finke B, Luethen F, Schroeder K et al (2007) The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces. Biomaterials 28(30):4521–4534. https://doi.org/10.1016/j.biomaterials.2007.06.028

    Article  CAS  PubMed  Google Scholar 

  29. Tuby H, Maltz L, Oron U et al (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39(4):373–378. https://doi.org/10.1002/lsm.20492

    Article  PubMed  Google Scholar 

  30. Hou JF, Zhang H, Yuan X et al (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733

    Article  Google Scholar 

  31. Mvula B, Mathope T, Moore T et al (2008) The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23(3):277–282

    Article  CAS  Google Scholar 

  32. Kim HK, Kim JH, Abbas AA et al (2008) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222

    Article  Google Scholar 

  33. Luo X, Chen J, Song WX et al (2008) Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Investig 88(12):1264–1277. https://doi.org/10.1038/labinvest.2008.98

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto Y, Ohsaki Y, Goto T et al (2003) Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res 82(12):962–966. https://doi.org/10.1177/154405910308201205

    Article  CAS  PubMed  Google Scholar 

  35. Aubin JE, Liu F, Malaval L et al (1995) Osteoblast and chondroblast differentiation. Bone 17(2):S77–S83

    Article  Google Scholar 

  36. Ikeda T, Nomura S, Yamaguchi A et al (1992) In situ hybridization of bone matrix proteins in undecalcified adult rat bone sections. J Histochem Cytochem 40(8):1079–1088. https://doi.org/10.1177/40.8.1619274

    Article  CAS  PubMed  Google Scholar 

  37. Katayama N, Kato H, Taguchi Y et al (2014) The effects of synthetic oligopeptide derived from enamel matrix derivative on cell proliferation and osteoblastic differentiation of human mesenchymal stem cells. Int J Mol Sci 15(8):14026–14043. https://doi.org/10.3390/ijms150814026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rutkovskiy A, Stensløkken KO, Vaage IJ (2016) Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95–106. https://doi.org/10.12659/msmbr.901142

    Article  PubMed  PubMed Central  Google Scholar 

  39. McCarthy TL, Ji C, Chen Y et al (2000) Runt domain factor (Runx)-dependent effects on CCAAT/enhancer-binding protein δ expression and activity in osteoblasts. J Biol Chem 275(28):21746–21753. https://doi.org/10.1074/jbc.M002291200

    Article  CAS  PubMed  Google Scholar 

  40. Karsenty G, Park R-W (1995) Regulation of type I collagen genes expression. Int Rev Immunol 12(2–4):177–185. https://doi.org/10.3109/08830189509056711

    Article  CAS  PubMed  Google Scholar 

  41. He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/ -catenin signaling: arrows point the way. Development 131(8):1663–1677

    Article  CAS  Google Scholar 

  42. Dolores B, Rocky ST et al (2010) Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow Mesenchymal stem cells. J Cell Physiol 212(3):817–826. https://doi.org/10.1002/jcp.21080

    Article  CAS  Google Scholar 

  43. Gardner S, Pawson AJ (2009) Emerging targets of the gnrh receptor: novel interactions with wnt signaling mediators. Neuroendocrinology 89(3):241–251. https://doi.org/10.1159/000165377

    Article  CAS  PubMed  Google Scholar 

  44. Zhang RF, Wang Q, Zhang AA et al (2018) Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 22(9):2860–2868

    PubMed  Google Scholar 

  45. Zhang T, Liu L, Fan J et al (2017) Low-level laser treatment stimulates hair growth via upregulating Wnt10b and β-catenin expression in C3H/HeJ mice. Lasers Med Sci 32(5):1189–1195. https://doi.org/10.1007/s10103-017-2224-8

    Article  PubMed  Google Scholar 

  46. You W, Fan L, Duan D et al (2014) Foxc2 over-expression in bone marrow mesenchymal stem cells stimulates osteogenic differentiation and inhibits adipogenic differentiation. Mol Cell Biochem 386:125–134

    Article  CAS  Google Scholar 

  47. Huang SMA, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signaling. Nature 461(7264):614–620

    Article  CAS  Google Scholar 

  48. Guo C, Yang RJ, Jang K et al (2017) Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 cells. Cell Physiol Biochem 43(4):1547–1561. https://doi.org/10.1159/000481978

    Article  CAS  PubMed  Google Scholar 

  49. Listl S, Tu YK, Faggion CM Jr (2010) A cost-effectiveness evaluation of enamel matrix derivatives alone or in conjunction with regenerative devices in the treatment of periodontal intra-osseous defects. J Clin Periodontol 37(10):920–927

    Article  Google Scholar 

  50. Esnouf A, Wright PA, Moore JC, Ahmed S (2007) Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res 32(1–2):81–86

    Article  Google Scholar 

  51. Opel DR, Hagstrom E, Pace AK et al (2015) Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol 8(6):36–44

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (16K11617, 17K11818, and 18K17080) from the Japan Society for the Promotion of Science (Tokyo, Japan), and a Research Promotion Grant (19-05) from Osaka Dental University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yaru Ruan, Hirohito Kato, Yoichiro Taguchi, Nobuhiro Yamauchi, and Makoto Umeda. The first draft of the manuscript was written by Yaru Ruan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoichiro Taguchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Kato, H., Taguchi, Y. et al. Irradiation by high-intensity red light-emitting diode enhances human bone marrow mesenchymal stem cells osteogenic differentiation and mineralization through Wnt/β-catenin signaling pathway. Lasers Med Sci 36, 55–65 (2021). https://doi.org/10.1007/s10103-020-03002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03002-5

Keywords

Navigation