Skip to main content

Advertisement

Log in

Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study has evaluated the effects of photodynamic inactivation (PDI) using erythrosine as photosensitizer and green light-emitting diode (LED) on biofilms of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans. We have also evaluated the effect of sucrose on biofilm formation and bacterial growth and sensitivity to PDI. Biofilms were formed in suspension of 106 cells/ml on plates before being grown in broth culture with and without sucrose and incubated for 48 h. Next, the treatment was applied using erythrosine at a concentration of 400 μM for 5 min and green LED (532 ± 10 nm) for 3 min on biofilms alone and in combination. The plates were washed and sonicated to disperse the biofilms, and serial dilutions were carried and aliquots seeded in Sabouraud agar before incubation for 48 h. Next, the colony-forming units per milliliter (CFU/ml; log10) were counted and analyzed statistically (ANOVA, Tukey test, P ≤ 0.05). Results show that S. mutans favors the growth of C. albicans in biofilms with sucrose, with treatment not being effective. However, when the biofilm was grown without sucrose, we found a reduction in biofilm formation and a significant decrease in the PDI treatment (P < 0.0001). In conclusion, both growth and sensitivity to PDI in biofilms of C. albicans are strongly influenced by bacterial combination, and the presence of sucrose affected directly the growth and sensitivity of the biofilm to PDI as sucrose is the substrate for construction of the exopolysaccharide matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71(4):653–670. doi:10.1128/MMB12.00024-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66(3):486–505. doi:10.1128/MMBR.66.3.486-505.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haffajee AD, Socransky SS (2006) Introduction to microbial aspects of periodontal biofilm communities, development and treatment. Periodontol 2000(42):7–12. doi:10.1111/j.1600-0757.2006.00190.x

    Article  Google Scholar 

  4. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS (2003) Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 30(7):644–654. doi:10.1034/j.1600-051X.2003.00376.x

    Article  PubMed  Google Scholar 

  5. Cruz MR, Graham CE, Gagliano BC, Lorenz MC, Garsin DA (2013) Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Infect Immun 81(1):189–200. doi:10.1128/IAI.00914-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shekh RM, Roy U (2012) Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis. BMC Microbiol 12(1):132. doi:10.1186/1471-2180-12-132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brusca MI, Irastorza RM, Cattoni DI, Ozu M, Chara O (2013) Mechanisms of interaction between Candida albicans and Streptococcus mutans: an experimental and mathematical modelling study. Acta Odontol Scand 71(3–4):416–423. doi:10.3109/00016357.2012.690530

    Article  PubMed  Google Scholar 

  8. Seneviratne CJ, Jin L, Samaranayake LP (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 7:582–590. doi:10.1111/j.1601-0825.2007.01424.x

    Article  Google Scholar 

  9. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AOC (2010) Comparison of the photodynamic fungicidal efficacy ogf methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 3:385–389. doi:10.1007/s10103-009-0706-z

    Article  Google Scholar 

  10. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13(1):20–26. doi:10.1016/j.tim.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  11. Hube B (2004) From comensal to pathogen: stage-and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 4:336–334. doi:10.1016/j.mib.2004.06.003

    Article  Google Scholar 

  12. Souza SC, Junqueira JC, Balducci I, Ito-Koga CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low power laser light. Photochem Photobiol B Biol 83(1):34–38. doi:10.1016/j.jphotobiol.2005.12.002

    Article  Google Scholar 

  13. Lambrechts SA, Aalders MC, Marle JV (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 5:2026–2034. doi:10.1128/AAC.49.5.2026–2034.2005

    Article  Google Scholar 

  14. Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK et al (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 4:904–909. doi:10.1111/j.1751-1097.2011.00938.x

    Article  Google Scholar 

  15. Smijs TG, Pavel S (2011) The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. Photochem Photobiol 1:2–13. doi:10.1111/j.1751-1097.2010.00848.x

    Article  Google Scholar 

  16. Freire F, Costa ACBP, Pereira CA, Junior MB, Junqueira JC, Jorge AOC (2013) Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers Med Sci 3:949–955. doi:10.1007/s10103-013-1435-x

    Google Scholar 

  17. Lyon JP, Moreira LM, Moraes PC, Santos FV, Resende MA (2011) Photodynamic therapy for pathogenic fungi. Mycoses 5:265–271. doi:10.1111/j.1439- 507.2010.01966.x

    Article  Google Scholar 

  18. Koo H, Xiao J, Klein MI, Jeon JG (2010) Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol 192(12):3024–3032. doi:10.1128/JB.01649-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92(12):1065–1073. doi:10.1177/0022034513504218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AHM, Hamaker BR, Lemos JA, Koo H (2010) Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS One 5(10):e13478. doi:10.1371/journal.pone.0013478

    Article  PubMed  PubMed Central  Google Scholar 

  21. Costa AC, de Campos Rasteiro VM, Pereira CA, da Silva Hashimoto ES, Beltrame M Jr, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy. Arch Oral Biol 56(11):1299–1305. doi:10.1016/j.archoralbio.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  22. Costa AC, Rasteiro VM, Pereira CA, Rossoni RD, Junqueira JC, Jorge AO (2012) The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses 55(1):56–63. doi:10.1111/j.1439-0507.2011.02042.x

    Article  CAS  PubMed  Google Scholar 

  23. Costa AC, Campos VMR, Hashimoto ESS, Araújo CF, Pereira CA, Junqueira JC, Jorge AO (2012) Effect of erythrosine- and LED-mediated photodynamic therapy on buccal candidiasis infection of immunosuppressed mice and Candida albicans adherence to buccal epithelial cells. Oral Surg Oral Med Oral Pathol Oral Radiol 114(1):67–74. doi:10.1016/j.oooo.2012.02.002

    Article  PubMed  Google Scholar 

  24. Garsin DA, Lorenz MC (2013) Candida albicans and Enterococcus faecalis in the gut: synergy in commensalism? Gut Microbes 4(5):409–415. doi:10.4161/gmic.26040

    Article  PubMed  PubMed Central  Google Scholar 

  25. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82(5):1968–1981. doi:10.1128/IAI.00087-14

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, Wagner-Döbler (2013) Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. doi:10.1038/ismej.2014.73

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the State of São Paulo University (UNESP) for the resources and encouragement of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Malagutti Tomé.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Funding

The authors declare that they did not receive funding for the development of this research.

Ethical procedures

All ethical procedures were followed. Because the research used ATCC strains of microorganisms and did not involve any kinds of animal, the approval committee of ethics and informed consent do not apply to work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomé, F.M., Paula Ramos, L.D., Freire, F. et al. Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy. Lasers Med Sci 32, 1237–1243 (2017). https://doi.org/10.1007/s10103-017-2201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2201-2

Keywords

Navigation