Skip to main content

Advertisement

Log in

Influence of Nd:YAG laser on intrapulpal temperature and bond strength of human dentin under simulated pulpal pressure

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effects of simulated pulpal pressure (SPP) on the variation of intrapulpal temperature (ΔT) and microtensile bond strength (μTBS) to dentin submitted to an adhesive technique using laser irradiation. One hundred sound human molars were randomly divided into two groups (n = 50), according to the presence or absence of SPP (15 cm H2O). Each group was divided into five subgroups (n = 10) according to Nd:YAG laser energy (60, 80, 100, 120, 140 mJ/pulse). The samples were sequentially treated with the following: 37 % phosphoric acid, adhesive (Scotchbond Universal), irradiation with Nd:YAG laser (60 s), and light curing (10 s). ΔT was evaluated during laser irradiation using a type K thermocouple. Next, a composite resin block was build up onto the irradiated area. After 48 h, samples were submitted to microtensile test (10 kgf load cell, 0.5 mm/min). Data were analyzed by two-way ANOVA and Tukey tests (p = 0.05). ANOVA revealed significant differences for ΔT and TBS in the presence of SPP. For ΔT, the highest mean (14.3 ± 3.23 °C)A was observed in 140 mJ and without SPP. For μTBS, the highest mean (33.4 ± 4.15 MPa)A was observed in 140 mJ and without SPP. SPP significantly reduced both ΔT and μTBS during adhesive procedures, lower laser energy parameters resulted in smaller ΔT, and the laser parameters did not influence the μTBS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fusayama T, Nakamura M, Kurosaki N, Iwaku M (1979) Non-pressure adhesion of a new adhesive restorative resin. J Dent Res 58:1364–1370

    Article  PubMed  CAS  Google Scholar 

  2. Sano H, Shono T, Sonoda H et al (1994) Relationship between surface area for adhesion and tensile bond strength—evaluation of a micro-tensile bond test. Dent Mater 10:236–240

    Article  PubMed  CAS  Google Scholar 

  3. Oilo G, Olsson S (1990) Tensile bond strength of dentin adhesives: a comparison of materials and methods. Dent Mater 6:138–144

    Article  PubMed  CAS  Google Scholar 

  4. Garberoglio R, Brannstrom M (1976) Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol 21:355–362

    Article  PubMed  CAS  Google Scholar 

  5. Tao L, Pashley DH (1976) The relationship between dentin bond strengths and dentin permeability. Dent Mater 5:133–139

    Article  Google Scholar 

  6. Nakabayashi N, Nakamura M, Yasuda N (1991) Hybrid layer as a dentin-bonding mechanism. J Esthet Dent 3:133–138

    Article  PubMed  CAS  Google Scholar 

  7. Perdigao J, Swift EJ Jr, Denehy GE, Wefel JS, Donly KJ (1994) In vitro bond strengths and SEM evaluation of dentin bonding systems to different dentin substrates. J Dent Res 73:44–55

    Article  PubMed  CAS  Google Scholar 

  8. Goncalves SE, de Araujo MA, Damiao AJ (1999) Dentin bond strength: influence of laser irradiation, acid etching, and hypermineralization. J Clin Laser Med Surg 17:77–85

    PubMed  CAS  Google Scholar 

  9. Marshall GW Jr (1993) Dentin: microstructure and characterization. Quintessence Int 24:606–617

    PubMed  Google Scholar 

  10. Weiner S, Veis A, Beniash E et al (1999) Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth. J Struct Biol 126:27–41

    Article  PubMed  CAS  Google Scholar 

  11. Goodis HE, White JM, Marshall GW Jr et al (1999) Effects of Nd: and Ho:yttrium-aluminium-garnet lasers on human dentine fluid flow and dental pulp-chamber temperature in vitro. Arch Oral Biol 42:845–854

    Article  Google Scholar 

  12. Perdigao J (2010) Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 26:e24–e37

    Article  PubMed  Google Scholar 

  13. Haldi J, Wynn W (1963) Protein fractions of the blood plasma and dental-pulp fluid of the dog. J Dent Res 42:1217–1221

    Article  PubMed  CAS  Google Scholar 

  14. Brannstrom M, Linden LA, Astrom A (1967) The hydrodynamics of the dental tubule and of pulp fluid. A discussion of its significance in relation to dentinal sensitivity. Caries Res 1:310–317

    Article  PubMed  CAS  Google Scholar 

  15. Spencer P, Wang Y (2002) Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res 62:447–456

    Article  PubMed  CAS  Google Scholar 

  16. Sauro S, Pashley DH, Montanari M et al (2007) Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives. Dent Mater 23:705–713

    Article  PubMed  CAS  Google Scholar 

  17. Park J, Ye Q, Topp EM et al (2010) Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin. J Biomed Mater Res A 93:1245–1251

    PubMed  PubMed Central  Google Scholar 

  18. Matos AB, Oliveira DC, Kuramoto M Jr, Eduardo CP, Matson E (1999) Nd:YAG laser influence on sound dentin bond strength. J Clin Laser Med Surg 17:165–169

    PubMed  CAS  Google Scholar 

  19. Matos AB, Oliveira DC, Navarro RS, de Eduardo CP, Matson E (2000) Nd:YAG laser influence on tensile bond strength of self-etching adhesive systems. J Clin Laser Med Surg 18:253–257

    PubMed  CAS  Google Scholar 

  20. Franke M, Taylor AW, Lago A, Fredel MC (2006) Influence of Nd:YAG laser irradiation on an adhesive restorative procedure. Oper Dent 31:604–609

    Article  PubMed  Google Scholar 

  21. Araujo RM, Eduardo CP, Duarte Junior SL, Araujo MA, Loffredo LC (2001) Microleakage and nanoleakage: influence of laser in cavity preparation and dentin pretreatment. J Clin Laser Med Surg 19:325–332

    Article  PubMed  CAS  Google Scholar 

  22. Ferreira LS, Francci C, Navarro RS, Calheiros FC, Eduardo CP (2009) Effects of Nd:YAG laser irradiation on the hybrid layer of different adhesive systems. J Adhes Dent 11:117–125

    PubMed  Google Scholar 

  23. Marimoto AK, Cunha LA, Yui KC et al (2013) Influence of Nd:YAG laser on the bond strength of self-etching and conventional adhesive systems to dental hard tissues. Oper Dent 38:447–455

    Article  PubMed  CAS  Google Scholar 

  24. Castro FL, Andrade MF, Hebling J, Lizarelli RF (2012) Nd:YAG laser irradiation of etched/unetched dentin through an uncured two-step etch-and-rinse adhesive and its effect on microtensile bond strength. J Adhes Dent 14:137–145

    PubMed  CAS  Google Scholar 

  25. Yu D, Powell GL, Higuchi WI, Fox JL (1993) Comparison of three lasers on dental pulp chamber temperature change. J Clin Laser Med Surg 11:119–122

    PubMed  CAS  Google Scholar 

  26. Anic I, Vidovic D, Luic M, Tudja M (1992) Laser induced molar tooth pulp chamber temperature changes. Caries Res 26:165–169

    Article  PubMed  CAS  Google Scholar 

  27. White JM, Fagan MC, Goodis HE (1994) Intrapulpal temperatures during pulsed Nd:YAG laser treatment of dentin, in vitro. J Periodontol 65:255–259

    Article  PubMed  CAS  Google Scholar 

  28. Ghiggi PC, Dall Agnol RJ, Burnett LH Jr, Borges GA, Spohr AM (2010) Effect of the Nd:YAG and the Er:YAG laser on the adhesive-dentin interface: a scanning electron microscopy study. Photomed Laser Surg 28:195–200

    Article  PubMed  CAS  Google Scholar 

  29. Belli R, Sartori N, Peruchi LD et al (2010) Slow progression of dentin bond degradation during one-year water storage under simulated pulpal pressure. J Dent 38:802–810

    Article  PubMed  CAS  Google Scholar 

  30. Lizarelli RF, Moriyama LT, Bagnato VS (2006) Temperature response in the pulpal chamber of primary human teeth exposed to Nd:YAG laser using a picosecond pulsed regime. Photomed Laser Surg 24:610–615

    Article  PubMed  CAS  Google Scholar 

  31. Ozok AR, Wu MK, De Gee AJ, Wesselink PR (2004) Effect of dentin perfusion on the sealing ability and microtensile bond strengths of a total-etch versus an all-in-one adhesive. Dent Mater 20:479–486

    Article  PubMed  CAS  Google Scholar 

  32. Batista GR, Barcellos DC, Torres CRG et al (2015) Effect of Nd:YAG laser on the solvent evaporation of adhesive systems. Eur J Esthet Dent 10(4):598–609

  33. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  PubMed  CAS  Google Scholar 

  34. Blankenau RJ, Kelsey WP, Powell GL, Cavel WT, Anderson DM (1994) Power density and external temperature of laser-treated root canals. J Clin Laser Med Surg 12:17–19

    PubMed  CAS  Google Scholar 

  35. Turkmen C, Gunday M, Karacorlu M, Basaran B (2000) Effect of CO2, Nd:YAG, and ArF excimer lasers on dentin morphology and pulp chamber temperature: an in vitro study. J Endod 26:644–648

    Article  PubMed  CAS  Google Scholar 

  36. Sulieman M, Rees JS, Addy M (2006) Surface and pulp chamber temperature rises during tooth bleaching using a diode laser: a study in vitro. Br Dent J 200:631–634

    Article  PubMed  CAS  Google Scholar 

  37. Secilmis A, Bulbul M, Sari T, Usumez A (2013) Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Lasers Med Sci 28:167–170

    Article  PubMed  Google Scholar 

  38. Mazzitelli C, Monticelli F, Osorio R et al (2008) Effect of simulated pulpal pressure on self-adhesive cements bonding to dentin. Dent Mater 24:1156–1163

    Article  PubMed  CAS  Google Scholar 

  39. Gregoire G, Joniot S, Guignes P, Millas A (2003) Dentin permeability: self-etching and one-bottle dentin bonding systems. J Prosthet Dent 90:42–49

    Article  PubMed  CAS  Google Scholar 

  40. Spencer P, Ye Q, Park J et al (2012) Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target? Braz Dent Sci 15:4–18

    PubMed  PubMed Central  Google Scholar 

  41. Pashley DH (1984) Smear layer: physiological considerations. Oper Dent 3:13–29

    CAS  Google Scholar 

  42. Sauk JJ, Norris K, Foster R, Moehring J, Somerman MJ (1988) Expression of heat stress proteins by human periodontal ligament cells. J Oral Pathol 17:496–499

    Article  PubMed  CAS  Google Scholar 

  43. Moriyama EH, Zangaro RA, Lobo PD et al (2003) Optothermal transfer simulation in laser-irradiated human dentin. J Biomed Opt 8:298–302

    Article  PubMed  Google Scholar 

  44. Yiu CK, King NM, Carrilho MR et al (2006) Effect of resin hydrophilicity and temperature on water sorption of dental adhesive resins. Biomaterials 27:1695–1703

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.M., Gonçalves, L.L., Fonseca, B.M. et al. Influence of Nd:YAG laser on intrapulpal temperature and bond strength of human dentin under simulated pulpal pressure. Lasers Med Sci 31, 49–56 (2016). https://doi.org/10.1007/s10103-015-1827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1827-1

Keywords

Navigation