Skip to main content
Log in

Optical diagnosis of gallbladder cancers via two-photon excited fluorescence imaging of unstained histological sections

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Two-photon excited fluorescence (TPEF) microscopy, based on signal from cells, can provide detailed information on tissue architecture and cellular morphology in unstained histological sections to generate subcellular-resolution images from tissue directly. In this paper, we used TPEF microscopy to image microstructure of human normal gallbladder and three types of differentiated carcinomas in order to investigate the morphological changes of tissue structure, cell, cytoplasm, and nucleus without hematoxylin and eosin (H&E) staining. It displayed that TPEF microscopy can well image the stratified normal gallbladder tissue, including the mucosa, the muscularis, and the serosa. The typical cancer cell, characterized by cellular and nuclear pleomorphism, enlarged nuclei, and augmented nucleolus, can be identified in histological sections without H-E staining as well. The quantitative results showed that the areas of the nucleus and the nucleolus in three types of cancerous cells were all significantly greater than those in normal gallbladder columnar epithelial cells derived from TPEF microscopic images. The studies demonstrated that TPEF microscopy has the ability to characterize tissue structures and cell morphology of gallbladder cancers differentiated from a normal gallbladder in a manner similar to traditional histological analysis. As a novel tool, it has the potential for future retrospective studies of tumor staging and migration by utilizing histological section specimens without H-E staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Misra S, Chaturvedi A, Misra NC, Sharma ID (2003) Carcinoma of the gallbladder. Lancet Oncol 4:167–176. doi:10.1016/S1470-2045(03)01021-0

    Article  PubMed  Google Scholar 

  2. Lai CH, Lau WY (2008) Gallbladder cancer—a comprehensive review. Surgeon 6:101–110. doi:10.1016/S1479-666X(08)80073-X

    Article  PubMed  Google Scholar 

  3. Laitio M (1983) Histogenesis of epithelial neoplasms of human gallbladder II: classification of carcinoma on the basis of morphological features. Pathol Res Pract 178:57–66. doi:10.1016/S0344-0338(83)80086-7

    Article  CAS  PubMed  Google Scholar 

  4. Susumu N, Masami Y, Eiichi T (1989) Morphometric analysis of gallbladder adenocarcinoma: discrimination between carcinoma and dysplasia. Virchows Archiv A Pathol Anat 416:133–140. doi:10.1007/BF01606318

    Article  Google Scholar 

  5. Henson DE, Albores-Saavedra J, Corle D (1992) Carcinoma of the gallbladder: histologic types, stage of disease, grade, and survival rates. Cancer 70:1493–1497. doi:10.1002/1097-0142

    Article  CAS  PubMed  Google Scholar 

  6. Levy AD, Murakata LA, Rohrmann CA Jr (2001) Gallbladder carcinoma: radiologic-pathologic correlation. Radiographics 21:295–314. doi:10.1148/radiographics.21.2.g01mr16295

    Article  CAS  PubMed  Google Scholar 

  7. Hundal R, Shaffer EA (2014) Gallbladder cancer: epidemiology and outcome. J Clin Epidemiol 6:99–109. doi:10.2147/CLEP.S37357

    Google Scholar 

  8. Zevallos Maldonado C, Ruiz Lopez MJ, Gonzalez Valverde FM, Alarcon Soldevilla F, Pastor Quirante F, Garcia Medina V (2014) Ultrasound findings associated to gallbladder carcinoma. Cir Espen 92:348–355. doi:10.1016/j.ciresp.2012.10.007

    Article  Google Scholar 

  9. Ramos-Font C, Gomez-Rio M, Rodriguez-Fernandez A, Jimenez-Heffernan A, Sanchez Sanchez R, Llamas-Elvira JM (2014) Ability of FDG-PET/CT in the detection of gallbladder cancer. J Surg Oncol 109:218–224. doi:10.1002/jso.23476

    Article  PubMed  Google Scholar 

  10. Lee NK, Kim S, Kim TU, Kim DU, Seo HI, Jeon TY (2014) Diffusion-weighted MRI for differentiation of benign from malignant lesions in the gallbladder. Clin Radiol 69:e78–e85. doi:10.1016/j.crad.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  11. Larson K, Ho HH, Anumolu PL, Chen TM (2011) Hematoxylin and eosin tissue stain in Mohs micrographic surgery: a review. Dermatol Surg 37:1089–1099. doi:10.1111/j.1524-4725.2011.02051.x

    Article  CAS  PubMed  Google Scholar 

  12. Gill GW (2010) H&E Staining. In: Kumar GL, Kiernan JA (eds) Education guide: special stains and H&E, 2nd edn. Dako North America, California, pp 177–184

    Google Scholar 

  13. Denk W, Strickler J, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi:10.1126/science.2321027

    Article  CAS  PubMed  Google Scholar 

  14. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. doi:10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  15. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080. doi:10.1073/pnas.0832308100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yan J, Chen G, Chen J, Liu N, Zhuo S, Yu H, Ying M (2011) A pilot study of using multiphoton microscopy to diagnose gastric cancer. Surg Endosc 25:1425–1430. doi:10.1007/s00464-010-1409-z

    Article  PubMed  Google Scholar 

  17. Pavlova I, Hume KR, Yazinski SA, Peters RM, Weiss RS, Webb WW (2010) Multiphoton microscopy as a diagnostic imaging modality for lung cancer. Proc Soc Photo Opt Instrum Eng 7569:756918. doi:10.1117/12.841017

    PubMed Central  PubMed  Google Scholar 

  18. Wu X, Chen G, Lu J, Zhu W, Qiu J, Chen J, Xie S, Zhuo S, Yan J (2013) Label-free detection of breast masses using multiphoton microscopy. PLoS ONE 8:e65933. doi:10.1371/journal.pone.0065933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Madden KS, Zettel ML, Majewska AK, Brown EB (2013) Brain tumor imaging: live imaging of glioma by two-photon microscopy. Cold Spring Harb Protoc. doi:10.1101/pdb.prot073668, 3: pdb-prot073668

    Google Scholar 

  20. Yan J, Zhuo S, Chen G, Wu X, Zhou D, Xie S, Jiang J, Ying M, Jia F, Chen J, Zhou J (2012) Preclinical study of using multiphoton microscopy to diagnose liver cancer and differentiate benign and malignant liver lesions. J Biomed Opt 17:0260041–0260047. doi:10.1117/1.JBO.17.2.026004

    Article  Google Scholar 

  21. Tuer A, Tokarz D, Prent N, Cisek R, Alami J, Dumont DJ, Bakueva L, Rowlands J, Barzda V (2010) Nonlinear multicontrast microscopy of hematoxylin-and-eosin-stained histological sections. J Biomed Opt 15:026018. doi:10.1117/1.3382908

    Article  PubMed  Google Scholar 

  22. Chen J, Xu J, Kang D, Xu M, Zhuo S, Zhu X, Jiang X (2013) Multiphoton microscopic imaging of histological sections without hematoxylin and eosin staining differentiates carcinoma in situ lesion from normal oesophagus. Appl Phys Lett 103:183701. doi:10.1063/1.4826322

    Article  Google Scholar 

  23. Xu J, Kang D, Xu M, Zhuo S, Zhu X, Chen J (2013) Multiphoton microscopic imaging of esophagus during the early phase of tumor progression. Scanning 35:387–391. doi:10.1002/sca.21079

    Article  PubMed  Google Scholar 

  24. Manuelidis L (1984) Active nucleolus organizers are precisely positioned in adult central nervous system cells but not in neuroectodermal tumor cells. J Neuropathol Exp Neurol 43:225–241

    Article  CAS  PubMed  Google Scholar 

  25. Rüschoff J (1992) Nucleolus organizer regions in pathomorphologic tumor diagnosis. Veroff Pathol 139:1–144

    PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1115), the National Natural Science Foundation of China (Grant Nos. 81101209, 61275006, and 81271620), the Natural Science Foundation for Distinguished Young Scholars of Fujian Province (2014 J06016), and the China Scholarship Council Funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Zhu or Zheng Shi.

Additional information

Zhipeng Hong, Youting Chen, and Jing Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Z., Chen, Y., Chen, J. et al. Optical diagnosis of gallbladder cancers via two-photon excited fluorescence imaging of unstained histological sections. Lasers Med Sci 30, 225–233 (2015). https://doi.org/10.1007/s10103-014-1652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1652-y

Keywords

Navigation