Skip to main content

Advertisement

Log in

Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphosphonate therapy. However, its pathophysiology is not yet fully elucidated, and effective treatment of BRONJ remains unclear. The aim of this study is to investigate the effects of alendronate on oral keratinocytes and of low-level laser therapy (LLLT) on alendronate-treated keratinocytes, specifically by evaluating their viability, apoptosis, and wound healing function after irradiation. Oral keratinocyte cells (HaCaT) were exposed to 25 μM alendronate. Then, laser irradiation was performed with a low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; NDLux, Seoul, Korea) using 1.2 J/cm2 energy dose. Viability was analyzed using MTT assay. Apoptosis was measured by Hoechst staining, caspase assay. Changes in secretion of IL-8, VEGF, and collagen type I were studied by ELISA and immunofluorescence microscopy. Scratch wound assays were also performed to measure cellular migration. Our results show that alendronate inhibits keratinocyte viability, expression of IL-8, VEGF, and collagen type I which are intimately related to healing events and cell migration while promoting apoptosis. Our results serve to demonstrate the utility of LLLT in partially overcoming the inhibitory effects of this bisphosphonate. From these results, the authors believe that the present study will provide an experimental basis for a fuller explanation of the clinical effects of LLLT as a BRONJ treatment modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Silverman SL, Maricic M (2007) Recent developments in bisphosphonate therapy. Semin Arthritis and Rheum 37:1–12

    Article  CAS  Google Scholar 

  2. Marx RE (2003) Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg 61:1238–1239

    Article  Google Scholar 

  3. Ruggiero SL, Mehrotra B, Rosenberg TJ, Engroff SL (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62:527–534

    Article  PubMed  Google Scholar 

  4. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575

    Article  PubMed  Google Scholar 

  5. Walter C, Pabst A, Ziebart T, Klein M, Al-Nawas B (2011) Bisphosphonates affect migration ability and cell viability of HUVEC, fibroblasts and osteoblasts in vitro. Oral Dis 17:194–199

    Article  CAS  PubMed  Google Scholar 

  6. Scheper MA, Badros A, Chaisuparat R, Cullen KJ, Meiller TF (2009) Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol 144:667–676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ravosa MJ, Ning J, Liu Y, Stack MS (2011) Bisphosphonate effects on the behaviour of oral epithelial cells and oral fibroblasts. Arch Oral Biol 56:491–498

    Article  CAS  PubMed  Google Scholar 

  8. Landersberg R, Cozin M, Creamrs S, Woo V, Kousteni S, Sinha S, Garrett-Sinha L, Raghavan S (2008) Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg 66:839–847

    Article  Google Scholar 

  9. Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41:318–320

    Article  CAS  PubMed  Google Scholar 

  10. Marx RE, Cillo JE Jr, Ulloa JJ (2007) Oral bisphosphonate-induced osteonecrosis: risk factors, prediction of risk using serum CTX testing, prevention, and treatment. J Oral Maxillofac Surg 65:2397–2410

    Article  PubMed  Google Scholar 

  11. Abu-Id MH, Açil Y, Gottschalk J, Kreusch T (2006) Bisphosphonate-associated osteonecrosis of the jaw. Mund Kiefer Gesichtschir 10:73–81

    Article  CAS  PubMed  Google Scholar 

  12. Abramoff MM, Lopes NN, Lopes LA, Dib LL, Guilherme A, Caran EM, Barreto AD, Lee ML, Petrilli AS (2008) Low-level laser therapy in the prevention and treatment of chemotherapy-induced oral mucositis in young patients. Photomed Laser Surg 26:393–400

    Article  CAS  PubMed  Google Scholar 

  13. Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg Med 34:260–265

    Article  PubMed  Google Scholar 

  14. Damante CA, De Micheli G, Miyagi SP, Feist IS, Marques MM (2009) Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers Med Sci 24:885–891

    Article  PubMed  Google Scholar 

  15. Scoletta M, Arduino PG, Reggio L, Dalmasso P, Mozzati M (2010) Effect of low-level laser irradiation on bisphosphonate-induced osteonecrosis of the jaws: preliminary results of a prospective study. Photomed Laser Surg 28:179–184

    Article  CAS  PubMed  Google Scholar 

  16. Bayram H, Kenar H, Taşar F, Hasırcı V (2013) Effect of low level laser therapy and zoledronate on the viability and ALP activity of Saos-2 cells. Int J Oral Maxillofac Surg 42:140–146

    Article  PubMed  Google Scholar 

  17. Borromeo GL, Tsao CE, Darby IB, Ebeling PR (2011) A review of the clinical implications of bisphosphonates in dentistry. Aust Dent J 56:2–9

    Article  CAS  PubMed  Google Scholar 

  18. de Groen PC, Lubbe DF, Hirsch LJ, Daifotis A, Stephenson W, Freedholm D, Pryor-Tillotson S, Seleznick MJ, Pinkas H, Wang KK (1996) Esophagitis associated with the use of alendronate. N Engl J Med 335:1016–1021

    Article  PubMed  Google Scholar 

  19. Marshall JK, Thabane M, James C (2006) Randomized active and placebo-controlled endoscopy study of a novel protected formulation of oral alendronate. Dig Dis Sci 51:864–868

    Article  CAS  PubMed  Google Scholar 

  20. Rubegni P, Fimiani M (2006) Images in clinical medicine. Bisphosphonate-associated contact stomatitis. N Engl J Med 355:e25

    Article  PubMed  Google Scholar 

  21. Landesberg R, Woo V, Cremers S, Cozin M, Marolt D, Vunjak-Novakovic G, Kousteni S, Raghavan S (2011) Potential pathophysiological mechanisms in osteonecrosis of the jaw. Ann N Y Acad Sci 1218:62–79

    Article  CAS  PubMed  Google Scholar 

  22. Kim RH, Lee RS, Williams D, Bae S, Woo J, Lieberman M, Oh JE, Dong Q, Shin KH, Kang MK, Park NH (2011) Bisphosphonates induce senescence in normal human oral keratinocytes. J Dent Res 90:810–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ohnuki H, Izumi K, Terada M, Saito T, Kato H, Suzuki A, Kawano Y, Nozawa-Inoue K, Takagi R, Maeda T (2012) Zoledronic acid induces S-phase arrest via a DNA damage response in normal human oral keratinocytes. Arch Oral Biol 57:906–917

    Article  CAS  PubMed  Google Scholar 

  24. Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304:274–286

    Article  CAS  PubMed  Google Scholar 

  25. Eming SA, Brachvogel B, Odorisio T, Koch M (2007) Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem 42:115–170

    Article  CAS  PubMed  Google Scholar 

  26. Pabst AM, Ziebart T, Koch FP, Taylor KY, Al-Nawas B, Walter C (2012) The influence of bisphosphonates on viability, migration, and apoptosis of human oral keratinocytes-in vitro study. Clin Oral Investig 16:87–93

    Article  PubMed  Google Scholar 

  27. Scheller EL, Baldwin CM, Kuo S, D’Silva NJ, Feinberg SE, Krebsbach PH, Edwards PC (2011) Bisphosphonates inhibit expression of p63 by oral keratinocytes. J Dent Res 90:894–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Häkkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 24:127–152

    Article  Google Scholar 

  29. Werner S, Krieg T, Smola H (2007) Keratinocyte–fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008

    Article  CAS  PubMed  Google Scholar 

  30. Goldman L, Goldman B, Van Lieu N (1987) Current laser dentistry. Lasers Surg Med 6:559–562

    Article  CAS  PubMed  Google Scholar 

  31. Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42:191–195

    Article  CAS  PubMed  Google Scholar 

  32. Nanami T, Shiba H, Ikeuchi S, Nagai T, Asanami S, Shibata T (1993) Clinical applications and basic studies of laser in dentistry and oral surgery. Keio J Med 42:199–201

    CAS  PubMed  Google Scholar 

  33. Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ (1990) Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol 94:822–826

    Article  CAS  PubMed  Google Scholar 

  34. Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28:367–374

    Article  PubMed  Google Scholar 

  35. Karu TI, Pyatibrat LV, Kolyakov SF, Afanasyeva NI (2005) Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J Photochem Photobiol B 81:98–106

    Article  CAS  PubMed  Google Scholar 

  36. Eells JT, Henry MM, Summerfelt P, Wong-Riley MT, Buchmann EV, Kane M, Whelan NT, Whelan HT (2003) Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A 100:3439–3444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187:73–80

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Xing D, Gao X, Wo S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219:553–562

    Article  CAS  PubMed  Google Scholar 

  39. Pyo SJ, Song WW, Kim IR, Park BS, Kim CH, Shin SH, Chung IK, Kim YD (2013) Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-β1 in hypoxic-cultured human osteoblasts. Lasers Med Sci 28:543–550

    Article  PubMed  Google Scholar 

  40. Dadpay M, Sharifian Z, Bayat M, Bayat M, Dabbagh A (2012) Effects of pulsed infra-red low level-laser irradiation on open skin wound healing of healthy and streptozotocin-induced diabetic rats by biomechanical evaluation. J Photochem Photobiol B 111:1–8

    Article  CAS  PubMed  Google Scholar 

  41. Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184

    Article  CAS  PubMed  Google Scholar 

  42. Loevschall H, Arenholt-Bindslev D (1994) Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14:347–354

    Article  CAS  PubMed  Google Scholar 

  43. Atsushi E, Korenori O, Satoshi I, Ebisu S, Nakano T, Umakoshi Y (2003) Effects of a-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization. Biomaterials 24:831–836

    Article  Google Scholar 

  44. Beck GR Jr, Sullivan EC, Moran E, Zerler B (1998) Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem 68:269–280

    Article  CAS  PubMed  Google Scholar 

  45. Bossini PS, Rennó AC, Ribeiro DA, Fangel R, Ribeiro AC, Lahoz Mde A, Parizotto NA (2012) Low level laser therapy (830 nm) improves bone repair in osteoporotic rats: similar outcomes at two different dosages. Exp Gerontol 47:136–142

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This was supported by Biomedical Research Institute Grant(2013-11), Pusan National University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hun Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JY., Kim, IR., Park, BS. et al. Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med Sci 30, 635–643 (2015). https://doi.org/10.1007/s10103-013-1382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1382-6

Keywords

Navigation