Skip to main content

Advertisement

Log in

Safety assessment of oral photodynamic therapy in rats

Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is based on the synergism of a photosensitive drug (a photosensitizer) and visible light to destroy target cells (e.g., malignant, premalignant, or bacterial cells). The aim of this study was to investigate the response of normal rat tongue mucosa to PDT following the topical application of hematoporphyrin derivative (Photogem®), Photodithazine®, methylene blue (MB), and poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with MB. One hundred and thirty three rats were randomly divided in various groups: the PDT groups were treated with the photosensitizers for 10 min followed by exposure to red light. Those in control groups received neither photosensitizer nor light, and they were subjected to light exposure alone or to photosensitizer alone. Fluorescent signals were obtained from tongue tissue immediately after the topical application of photosensitizers and 24 h following PDT. Histological changes were evaluated at baseline and at 1, 3, 7, and 15 days post-PDT treatment. Fluorescence was detected immediately after the application of the photosensitizers, but not 24 h following PDT. Histology revealed intact mucosa in all experimental groups at all evaluation time points. The results suggest that there is a therapeutic window where PDT with Photogem®, Photodithazine®, MB, and MB-loaded PLGA nanoparticles could safely target oral pathogenic bacteria without damaging normal oral tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Dougherty TJ (1986) Photosensitization of malignant tumors. Semin Surg Oncol 2(1):24–37

    Article  PubMed  CAS  Google Scholar 

  2. Triesscheijn M, Baas P, Schellens JH, Stewart FA (2006) Photodynamic therapy in oncology. Oncologist 11(9):1034–1044

    Article  PubMed  CAS  Google Scholar 

  3. Bressler NM, Bressler SB (2000) Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences. Invest Ophthalmol Vis Sci 41(3):624–628

    PubMed  CAS  Google Scholar 

  4. Tschen EH, Wong DS, Pariser DM, Dunlap FE, Houlihan A, Ferdon MB (2006) Photodynamic therapy using aminolaevulinic acid for patients with nonhyperkeratotic actinic keratoses of the face and scalp: phase IV multicentre clinical trial with 12-month follow up. Br J Dermatol 155(6):1262–1269

    Article  PubMed  CAS  Google Scholar 

  5. Overholt BF, Wang KK, Burdick JS, Lightdale CJ, Kimmey M, Nava HR, Sivak MV Jr, Nishioka N, Barr H, Marcon N, Pedrosa M, Bronner MP, Grace M, Depot M (2007) Five-year efficacy and safety of photodynamic therapy with Photofrin in Barrett's high-grade dysplasia. Gastrointest Endosc 66(3):460–468

    Article  PubMed  Google Scholar 

  6. Orenstein A, Klein D, Kopolovic J, Winkler E, Malik Z, Keller N, Nitzan Y (1997) The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS Immunol Med Microbiol 19(4):307–314

    Article  PubMed  CAS  Google Scholar 

  7. Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis 187(11):1717–1725

    Article  PubMed  Google Scholar 

  8. Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, Wilson M (2009) In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol 9:27

    Article  PubMed  Google Scholar 

  9. Gold MH (2007) Acne vulgaris: lasers, light sources and photodynamic therapy—an update 2007. Expert Rev Anti Infect Ther 5(6):1059–1069

    Article  PubMed  Google Scholar 

  10. Chabrier-Rosello Y, Foster TH, Perez-Nazario N, Mitra S, Haidaris CG (2005) Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother 49(10):4288–4295

    Article  PubMed  CAS  Google Scholar 

  11. Wainwright M (2008) Photodynamic therapy: the development of new photosensitisers. Anticancer Agents Med Chem 8(3):280–291

    Article  PubMed  CAS  Google Scholar 

  12. Romanko YS, Tsyb AF, Kaplan MA, Popuchiev VV (2004) Effect of photodynamic therapy with photodithazine on morphofunctional parameters of M-1 sarcoma. Bull Exp Biol Med 138(6):584–589

    Article  PubMed  Google Scholar 

  13. Trushina OI, Novikova EG, Sokolov VV, Filonenko EV, Chissov VI, Vorozhtsov GN (2008) Photodynamic therapy of virus-associated precancer and early stages cancer of cervix uteri. Photodiagnosis Photodyn Ther 5(4):256–259

    Article  PubMed  CAS  Google Scholar 

  14. Filonenko EV, Sokolov VV, Chissov VI, Lukyanets EA, Vorozhtsov GN (2008) Photodynamic therapy of early esophageal cancer. Photodiagnosis Photodyn Ther 5(3):187–190

    Article  PubMed  Google Scholar 

  15. Ferraz RC, Ferreira J, Menezes PF, Sibata CH, Castro e Silva O Jr, Bagnato VS (2009) Determination of threshold dose of photodynamic therapy to measure superficial necrosis. Photomed Laser Surg 27(1):93–99

    Article  PubMed  CAS  Google Scholar 

  16. Gois MM, Kurachi C, Santana EJ, Mima EG, Spolidorio DM, Pelino JE, Bagnato VS (2010) Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antimicrobial chemotherapy: an in vitro study. Lasers Med Sci 25(3):391–395

    Article  PubMed  Google Scholar 

  17. Wilson M (2004) Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 3(5):412–418

    Article  PubMed  CAS  Google Scholar 

  18. Harris F, Chatfield LK, Phoenix DA (2005) Phenothiazinium based photosensitisers—photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 6(5):615–627

    Article  PubMed  CAS  Google Scholar 

  19. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, Foschi F, Dunham J, Skobe Z, Yamazaki H, Kent R, Tanner AC, Amiji MM, Soukos NS (2010) Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod 36(2):322–328

    Article  PubMed  Google Scholar 

  20. McCarthy JR, Perez JM, Bruckner C, Weissleder R (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 5(12):2552–2556

    Article  PubMed  CAS  Google Scholar 

  21. Mima EG, Pavarina AC, Dovigo LN, Vergani CE, Costa CA, Kurachi C, Bagnato VS (2010) Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(3):392–401

    Article  PubMed  Google Scholar 

  22. Shenoy D, Little S, Langer R, Amiji M (2005) Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2(5):357–366

    Article  PubMed  CAS  Google Scholar 

  23. Klepac-Ceraj V, Patel N, Song X, Holewa C, Patel C, Kent R, Amiji MM, Soukos NS (2011) Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria. Lasers Surg Med 43(7):600–606

    PubMed  Google Scholar 

  24. Melo CA, Kurachi C, Grecco C, Sibata CH, Castro-e-Silva O, Bagnato VS (2004) Pharmacokinetics of photogem using fluorescence monitoring in wistar rats. J Photochem Photobiol B 73(3):183–188

    Article  PubMed  CAS  Google Scholar 

  25. Soukos NS (2000) Goodson JM (2010) Photodynamic therapy in the control of oral biofilms. Periodontol 2000 55(1):143–166

    Article  Google Scholar 

  26. Wainwright M, Mohr H, Walker WH (2007) Phenothiazinium derivatives for pathogen inactivation in blood products. J Photochem Photobiol B 86(1):45–58

    Article  PubMed  CAS  Google Scholar 

  27. George S, Kishen A (2007) Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt 12(3):034029

    Article  PubMed  Google Scholar 

  28. Xu Y, Young MJ, Battaglino RA, Morse LR, Fontana CR, Pagonis TC, Kent R, Soukos NS (2009) Endodontic antimicrobial photodynamic therapy: safety assessment in mammalian cell cultures. J Endod 35(11):1567–1572

    Article  PubMed  Google Scholar 

  29. Williams JA, Pearson GJ, Colles MJ, Wilson M (2004) The photo-activated antibacterial action of toluidine blue O in a collagen matrix and in carious dentine. Caries Res 38(6):530–536

    Article  PubMed  CAS  Google Scholar 

  30. Orth K, Ruck A, Stanescu A, Beger HG (1995) Intraluminal treatment of inoperable oesophageal tumours by intralesional photodynamic therapy with methylene blue. Lancet 345(8948):519–520

    Article  PubMed  CAS  Google Scholar 

  31. Millson CE, Wilson M, Macrobert AJ, Bedwell J, Bown SG (1996) The killing of Helicobacter pylori by low-power laser light in the presence of a photosensitiser. J Med Microbiol 44(4):245–252

    Article  PubMed  CAS  Google Scholar 

  32. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V (2002) Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16(10):1217–1226

    Article  PubMed  CAS  Google Scholar 

  33. Silva TC, Pereira AF, Exterkate RA, Bagnato VS, Buzalaf MA, Machado MA, Ten Cate JM, Crielaard W, Deng DM (2012) Application of an active attachment model as a high-throughput demineralization biofilm model. J Dent 40(1):41–47

    Article  PubMed  CAS  Google Scholar 

  34. Ribeiro DG, Pavarina AC, Dovigo LN, de Oliveira Mima EG, Machado AL, Bagnato VS, Vergani CE (2012) Photodynamic inactivation of microorganisms present on complete dentures. A clinical investigation: photodynamic disinfection of complete dentures Lasers Med Sci 27(1):161–8

    Google Scholar 

  35. Mima EG, Pavarina AC, Ribeiro DG, Dovigo LN, Vergani CE, Bagnato VS (2011) Effectiveness of photodynamic therapy for the inactivation of Candida spp. on dentures: in vitro study. Photomed Laser Surg 29(12):827–833

    Article  PubMed  Google Scholar 

  36. de Oliveira Mima EG, Pavarina AC, Silva MM, Ribeiro DG, Vergani CE, Kurachi C, Bagnato VS (2011) Denture stomatitis treated with photodynamic therapy: five cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(5):602–608

    Article  Google Scholar 

  37. Strakhovskaia MG, Belenikina NS, Ivanova EV, Chemeris Iu K, Stranadko EF (2002) The photodynamic inactivation of Candida guilliermondii in the presence of photodithazine. Mikrobiologiia 71(3):349–353

    PubMed  CAS  Google Scholar 

  38. Wen LY, Bae SM, Chun HJ, Park KS, Ahn WS (2011) Therapeutic effects of systemic photodynamic therapy in a leukemia animal model using A20 cells. Lasers Med Sci. doi:10.1007/s10103-011-0950-x

Download references

Acknowledgments

This work was supported by FAPESP.

Disclosure of proprietary interests

We certify that we have no affiliation with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the manuscript (e.g., employment, consultancies, stock ownership, honoraria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla R. Fontana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, C.R., Lerman, M.A., Patel, N. et al. Safety assessment of oral photodynamic therapy in rats. Lasers Med Sci 28, 479–486 (2013). https://doi.org/10.1007/s10103-012-1091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1091-6

Keywords

Navigation