Skip to main content
Log in

Fluorescence spectroscopy as a tool to detect and evaluate glucocorticoid-induced skin atrophy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Topical glucocorticoid (GC) therapy has been successfully used in the treatment of several common cutaneous diseases in clinical practice for a long time, and skin atrophy is one of the most typical cutaneous side effects of this therapy. The aim of this study was to evaluate the potential of noninvasive fluorescence spectroscopy (FS) technique in the detection and classification of GC-induced skin atrophy. A total of 20 male Wistar rats were used in the experimental protocol under controlled environmental conditions and with free access to food. One group received topical application of clobetasol propionate 0.05% for 14 days to induce cutaneous atrophy (atrophic group) and the other (control) group received only vehicle application following the same protocol and schedule. Histological analyses and FS measurements with laser excitation at both 532 nm and 408 nm were obtained on days 1 and 15. The FS results were classified as "normal" or "atrophic" according by histological analysis. Fluorescence spectra obtained with excitation at 408 nm allowed a clear distinction between the control and atrophic groups, and were more informative than the those obtained at 532 nm. Our results reveal that, if correctly applied, FS allows noninvasive evaluation of corticosteroid-induced skin atrophy, and thus represents an important step towards better monitoring of undesirable side effects of cutaneous therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sulzberger MB, Witten VH (1952) Effect of topically applied compound F in selected dermatoses. J Invest Dermatol 19:101–102. doi:10.1038/jid.1952.14

    PubMed  CAS  Google Scholar 

  2. Hengge UR, Ruzicka T, Schwartz RA, Cork MJ (2006) Adverse effects of topical glucocorticosteroids. J Am Acad Dermatol 54(1):1–15. doi:10.1016/j.jaad.2005.01.010

    Article  PubMed  Google Scholar 

  3. Schoepe S, Schäcke H, May E, Asadullah K (2006) Glucocorticoid therapy-induced skin atrophy. Exp Dermatol 15(6):406–420. doi:10.1111/j.0906-6705.2006.00435.x

    Article  PubMed  CAS  Google Scholar 

  4. Ahluwalia A (1998) Topical glucocorticoids and the skin-mechanisms of action: an update. Mediators Inflamm 7(3):183–193. doi:10.1080/09629359891126

    Article  PubMed  CAS  Google Scholar 

  5. Korting HC, Hülsebus E, Kerscher M, Greber R, Schäfer-Korting M (1995) Discrimination of the toxic potential of chemically differing topical glucocorticoids using a neutral red release assay with human keratinocytes and fibroblasts. Br J Dermatol 133(1):54–59. doi:10.1111/j.1365-2133.1995.tb02492.x

    Article  PubMed  CAS  Google Scholar 

  6. Lange K, Kleuser B, Gysler A, Bader M, Maia C, Scheidereit C, Korting HC, Schäfer-Korting M (2000) Cutaneous inflammation and proliferation in vitro: differential effects and mode of action of topical glucocorticoids. Skin Pharmacol Appl Skin Physiol 13(2):93–103. doi:10.1159/000029913

    PubMed  CAS  Google Scholar 

  7. Oikarinen A, Haapasaari KM, Sutinen M, Tasanen K (1998) The molecular basis of glucocorticoid-induced skin atrophy: topical glucocorticoid apparently decreases both collagen synthesis and the corresponding collagen mRNA level in human skin in vivo. Br J Dermatol 139(6):1106–10. doi:10.1046/j.1365-2133.1998.02646.x

    Article  PubMed  CAS  Google Scholar 

  8. Averbeck M, Gebhardt C, Anderegg U, Simon JC (2010) Suppression of hyaluronan synthase 2 expression reflects the atrophogenic potential of glucocorticoids. Exp Dermatol 19(8):757–9. doi:10.1111/j.1600-0625.2010.01099.x

    Article  PubMed  CAS  Google Scholar 

  9. Black MM (1969) A modified radiographic method for measuring skin thickness. Br J Dermatol 81(9):661–666. doi:10.1111/j.1365-2133.1969.tb16204.x

    Article  PubMed  CAS  Google Scholar 

  10. Marks R, Dykes PJ, Roberts E (1975) The measurement of corticosteroid induced dermal atrophy by a radiological method. Arch Dermatol Res 253(2):93–96. doi:10.1007/BF00582060

    Article  PubMed  CAS  Google Scholar 

  11. James MP, Black MM, Sparkes CG (1976) Proceedings: measurement of dermal atrophy induced by topical steroids using a radiographic technique. Br J Dermatol 95(Suppl 14):12. doi:10.1111/j.1365-2133.1976.tb07881.x

    PubMed  Google Scholar 

  12. Marks R (1976) Methods for the assessment of skin atrophogenicity of topical corticosteroids. Dermatologica 152(Suppl 1):117–26. doi:10.1159/000257872

    Article  PubMed  CAS  Google Scholar 

  13. Snyder DS, Greenberg RA (1977) Radiographic measurement of topical corticosteroid-induced atrophy. J Invest Dermatol 69(3):279–81. doi:10.1111/1523-1747.ep12507493

    Article  PubMed  CAS  Google Scholar 

  14. Tan CY, Marks R, Payne P (1981) Comparison of xeroradiographic and ultrasound detection of corticosteroid induced dermal thinning. J Invest Dermatol 76(2):126–128. doi:10.1111/1523-1747.ep12525463

    Article  PubMed  CAS  Google Scholar 

  15. Kerscher MJ, Korting HC (1992) Topical glucocorticoids of the non-fluorinated double-ester type. Lack of atrophogenicity in normal skin as assessed by high-frequency ultrasound. Acta Derm Venereol 72(3):214–216

    PubMed  CAS  Google Scholar 

  16. Korting HC (1993) Topical glucocorticoids and thinning of normal skin as to be assessed by ultrasound. Curr Probl Dermatol 21:114–121

    PubMed  CAS  Google Scholar 

  17. Lévy J, Gassmüller J, Schröder G, Audring H, Sönnichsen N (1994) Comparison of the effects of calcipotriol, prednicarbate and clobetasol 17-propionate on normal skin assessed by ultrasound measurement of skin thickness. Skin Pharmacol 7(4):231–236. doi:10.1159/000211299

    Article  PubMed  Google Scholar 

  18. Kolbe L, Kligman AM, Schreiner V, Stoudemayer T (2001) Corticosteroid-induced atrophy and barrier impairment measured by non-invasive methods in human skin. Skin Res Technol 7(2):73–77. doi:10.1034/j.1600-0846.2001.70203.x

    Article  PubMed  CAS  Google Scholar 

  19. Cossmann M, Welzel J (2006) Evaluation of the atrophogenic potential of different glucocorticoids using optical coherence tomography, 20-MHz ultrasound and profilometry; a double-blind, placebo-controlled trial. Br J Dermatol 155(4):700–706. doi:10.1111/j.1365-2133.2006.07369.x

    Article  PubMed  CAS  Google Scholar 

  20. Takema Y, Yorimoto Y, Ohsu H, Osanai O, Kawai M (1997) Age-related discontinuous changes in the in vivo fluorescence of human facial skin. J Dermatol Sci 15(1):55–58. doi:10.1016/S0923-1811(97)00612-9

    Article  PubMed  CAS  Google Scholar 

  21. Kollias N, Gillies R, Moran M, Kochevar IE, Anderson RR (1998) Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol 111(5):776–780. doi:10.1046/j.1523-1747.1998.00377.x

    Article  PubMed  CAS  Google Scholar 

  22. Sandby-Moller J, Thieden E, Philipsen PA, Heydenreich J, Wulf HC (2004) Skin autofluorescence as a biological UVR dosimeter. Photodermatol Photoimmunol Photomed 20(1):33–40. doi:10.1111/j.1600-0781.2004.00059.x

    Article  PubMed  CAS  Google Scholar 

  23. Gillies R, Zonios G, Anderson RR, Kollias N (2000) Fluorescence excitation spectroscopy provides information about human skin in vivo. J Invest Dermatol 115(4):704–707. doi:10.1046/j.1523-1747.2000.00091.x

    Article  PubMed  CAS  Google Scholar 

  24. Na R, Stender IM, Wulf HC (2001) Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm Venereol 81(4):246–249. doi:10.1080/00015550152572859

    Article  PubMed  CAS  Google Scholar 

  25. Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N (2001) In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol 73(2):178–183. doi:10.1562/0031-8655(2001)0730178IVFSON2.0.CO2

    Article  PubMed  CAS  Google Scholar 

  26. Panjehpour M, Julius CE, Phan MN, Vo-Dinh T, Overholt S (2002) Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg Med 31(5):367–373. doi:10.1002/lsm.10125

    Article  PubMed  Google Scholar 

  27. Drakaki E, Kaselouris E, Makropoulou M, Serafetinides AA, Tsenga A, Stratigos AJ, Katsambas AD, Antoniou C (2009) Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue. Skin Pharmacol Physiol 22(3):158–165. doi:10.1159/000211912

    Article  PubMed  CAS  Google Scholar 

  28. Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2(1-2):89–117. doi:10.1038/sj.neo.7900077

    Article  PubMed  CAS  Google Scholar 

  29. Kollias N, Stamatas GN (2002) Optical non-invasive approaches to diagnosis of skin diseases. J Investig Dermatol Symp Proc 7(1):64–75. doi:10.1046/j.1523-1747.2002.19635.x

    Article  PubMed  Google Scholar 

  30. Masters BR, So PT, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72(6):2405–2412. doi:10.1016/S0006-3495(97)78886-6

    Article  PubMed  CAS  Google Scholar 

  31. Lohmann W, Paul E (1988) In situ detection of melanomas by fluorescence measurements. Naturwissenschaften 75(4):201–202. doi:10.1007/BF00735581

    Article  PubMed  CAS  Google Scholar 

  32. Chwirot BW, Chwirot S, Redziński J, Michniewicz Z (1998) Detection of melanomas by digital imaging of spectrally resolved ultraviolet light-induced autofluorescence of human skin. Eur J Cancer 34(11):1730–1734

    Article  PubMed  CAS  Google Scholar 

  33. Bliznakova I, Borisova E, Avramov L (2007) Laser- and light-Induced autofluorescence spectroscopy of human skin in dependence on excitation wavelengths. Acta Phys Pol 112(5):1131–1136

    CAS  Google Scholar 

  34. Leffell DJ, Stetz ML, Milstone LM, Deckelbaum LI (1988) In vivo fluorescence of human skin. A potential marker of photoaging. Arch Dermatol 124(10):1514–1518

    Article  PubMed  CAS  Google Scholar 

  35. Lohmann W, Nilles M, Bödeker RH (1991) In situ differentiation between nevi and malignant melanomas by fluorescence measurements. Naturwissenschaften 78(10):456–457. doi:10.1007/BF01134381

    Article  PubMed  CAS  Google Scholar 

  36. Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4(2):241–263. doi:10.2217/bmm.10.1

    Article  PubMed  CAS  Google Scholar 

  37. Bagnato VS, Kurachi C, Castro-e-Silva O (2010) New perspectives for optical techniques in diagnostic and treatment of hepatic diseases. Acta Cir Bras 25(2):214–216. doi:10.1590/S0102-86502010000200016

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of CAPES (Brazilian Coordination for the Improvement of Higher Education Personnel; program NANOBIOTEC 856/2009, process no. 23038.027482/2009-60). We also acknowledge Dr Maria Teresa de Seixas Alves, MD, PhD (head of the Pathology Department of UNIFESP) for help with the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Gusmão Melo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemos, M.C., Correr, W.R., da Silva de Avó, L.R. et al. Fluorescence spectroscopy as a tool to detect and evaluate glucocorticoid-induced skin atrophy. Lasers Med Sci 27, 1059–1065 (2012). https://doi.org/10.1007/s10103-011-1045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-1045-4

Keywords

Navigation