Skip to main content

Advertisement

Log in

Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser irradiation (LLLI) and recombinant human bone morphogenetic protein type 2 (rhBMP-2) have been used to stimulate bone formation. LLLI stimulates proliferation of osteoblast precursor cells and cell differentiation and rhBMP-2 recruits osteoprogenitor cells to the bone healing area. This in vivo study evaluated the effects of LLLI and rhBMP-2 on the bone healing process in rats. Critical bone defects were created in the parietal bone in 42 animals, and the animals were divided into six treatment groups: (1) laser, (2) 7 μg of rhBMP-2, (3) laser and 7 μg of rhBMP-2, (4) 7 μg of rhBMP-2/monoolein gel, (5) laser and 7 μg rhBMP-2/monoolein gel, and (6) critical bone defect controls. A gallium-aluminum-arsenide diode laser was used (wavelength 780 nm, output power 60 mW, beam area 0.04 cm2, irradiation time 80 s, energy density 120 J/cm2, irradiance 1.5 W/cm2). After 15 days, the calvarial tissues were removed for histomorphometric analysis. Group 3 defects showed higher amounts of newly formed bone (37.89%) than the defects of all the other groups (P < 0.05). The amounts of new bone in defects of groups 1 and 4 were not significantly different from each other (24.00% and 24.75%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). The amounts of new bone in the defects of groups 2 and 5 were not significantly different from each other (31.42% and 31.96%, respectively), but were significantly different from the amounts in the other groups (P < 0.05). Group 6 defects had 14.10% new bone formation, and this was significantly different from the amounts in the other groups (P < 0.05). It can be concluded that LLLI administered during surgery effectively accelerated healing of critical bone defects filled with pure rhBMP-2, achieving a better result than LLLI alone or the use of rhBMP-2 alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166

    Article  PubMed  CAS  Google Scholar 

  2. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354

    Article  PubMed  CAS  Google Scholar 

  3. Shegarfi H, Reikeras O (2009) Review article: bone transplantation and immune response. J Orthop Surg 17:206–211

    Google Scholar 

  4. Toriumi DM, Robertson K (1993) Bone inductive biomaterials in facial plastic and reconstructive surgery. Facial Plast Surg 9:29–36

    Article  PubMed  CAS  Google Scholar 

  5. Bostrom MP, Saleh KJ, Einhorn TA (1999) Osteoinductive growth factors in preclinical fracture and long bone defects models. Orthop Clin N Am 30:647–658

    Article  CAS  Google Scholar 

  6. Canto FRT, Garcia SB, Issa JPM, Marin A, Guimarães EABB, Defino HLA (2008) Influence of decortication of the recipient graft bed on graft integration and tissue neoformation in the graft-recipient bed interface. Eur Spine J 17:706–714

    Article  PubMed  Google Scholar 

  7. Arosarena O, Collins W (2005) Comparison of BMP-2 and -4 for rat mandibular bone regeneration at various doses. Orthod Craniofac Res 8:267–276

    Article  PubMed  CAS  Google Scholar 

  8. Issa JPM, Nascimento C, Bentley MV, Guimarães EABB, Iyomasa MM, Sebald W, Albuquerque RF Jr (2007) Bone repair in rat mandible by rhBMP-2 associated with two carriers. Micron 39:373–379

    Article  PubMed  Google Scholar 

  9. Issa JP, Defino HL, Netto JC, Volpon JB, Regalo SC, Iyomasa MM, Siéssere S, Tiossi R (2010) Evaluation of rhBMP-2 and natural latex as potential osteogenic proteins in critical size defects by histomorphometric methods. Anat Rec 293:794–801

    Article  CAS  Google Scholar 

  10. Albuquerque RF Jr, Oliveira MTM, Guimarães EABB, Brentegani LG, Issa JPM (2008) Trigeminal nitric oxide synthase expression correlates with new bone formation during distraction osteogenesis. Calcif Tissue Int 82:309–315

    Article  PubMed  Google Scholar 

  11. Issa JPM, Nascimento C, Lamano-Carvalho TL, Iyomasa MM, Sebald W, Albuquerque RF Jr (2009) Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis. Clin Oral Implant Res 20:1286–1292

    Article  Google Scholar 

  12. Hally A (1964) A counting method for measuring the volumes of tissue components in microscopical sections. Q J Microsc Sci 105:503–517

    Google Scholar 

  13. Weibel ER, Kistler GS, Scherle WF (1966) Practical stereological methods for morphometric cytology. J Cell Biol 30:23–38

    Article  PubMed  CAS  Google Scholar 

  14. Mandarim-de-Lacerda CA (1995) Métodos quantitativos em morfologia. Eduerj, Rio de Janeiro

    Google Scholar 

  15. Carvalho PTC, Silva IS, Reis FA, Belchior ACG, Facco GG, Guimarães RN, Fernandes GHC, Denadai AS (2006) Effect of 650 nm low-power laser on bone morphogenetic protein in bone defects induced in rat femors. Acta Cir Bras 21:63–68

    Article  Google Scholar 

  16. Siéssere S, Sousa LG, Issa JP, Iyomasa MM, Pitol DL, Barbosa AP, Semprini M, Sebald W, Bentley MV, Regalo SC (2011) Application of low-level laser irradiation (LLLI) and rhBMP-2 in critical bone defect of ovariectomized rats: histomorphometric evaluation. Photomed Laser Surg 29:453–458. doi:10.1089/pho.2010.2917

    Article  PubMed  Google Scholar 

  17. Guzzardella GA, Fini M, Torricelli P, Giavaresi G, Giardino R (2002) Laser stimulation on bone defect healing: an in vitro study. Lasers Med Sci 17:216–220

    Article  PubMed  CAS  Google Scholar 

  18. Iyomasa DM, Garavelo I, Iyomasa MM, Watanabe IS, Issa JP (2009) Ultrastructural analysis of the low level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron 40:413–418

    Article  PubMed  CAS  Google Scholar 

  19. Spector JA, Luchs JS, Mehrara BJ, Greenwald JA, Smith LP, Longaker MT (2001) Expression of bone morphogenetic proteins during membranous bone healing. Plast Reconstr Surg 107:124–134

    Article  PubMed  CAS  Google Scholar 

  20. Ruhe PQ, Kroese-Deutman HC, Wolke JG, Spauwen PH, Jansen JA (2004) Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 25:2123–2132

    Article  PubMed  CAS  Google Scholar 

  21. Gerbi ME, Marques AM, Ramalho LM, Ponzi EA, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Pinheiro AL (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60

    Article  PubMed  Google Scholar 

  22. Denadai AS, Carvalho PTC, Reis FA, Belchior ACG, Pereira DM, Dourado DM, Silva IS, Oliveira LVF (2009) Morphometric and histological analysis of low-power laser influence on bone morphogenetic protein in bone defects repair. Laser Med Sci 24:689–695. doi:10.1007/s10103-008-0595-6

    Article  Google Scholar 

  23. Saracino S, Mozzati M, Martinasso G, Pol R, Canuto RA, Muzio G (2009) Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med 41:298–304

    Article  PubMed  Google Scholar 

  24. Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39:788–796

    Article  PubMed  Google Scholar 

  25. Garavello-Freitas I, Baranauskas V, Joazeiro PP, Padovani CR, Dal Pai-Silva M, da Cruz-Hofling MA (2003) Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia wound healing in rats. J Photochem Photobiol B 70:81–89

    Article  PubMed  CAS  Google Scholar 

  26. Pinheiro AL, Limeira Junior Fde A, Gerbi ME, Ramalho LM, Marzola C, Ponzi EA, Soares AO, De Carvalho LC, Lima HC, Gonçalves TO (2003) Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg 21:301–306

    Article  PubMed  Google Scholar 

  27. Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27:219–223

    Article  PubMed  CAS  Google Scholar 

  28. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97:693–700

    Article  PubMed  Google Scholar 

  29. Renno AC, de Moura FM, dos Santos NS, Tirico RP, Bossini PS, Parizotto NA (2006) Effects of 830-nm laser light on preventing bone loss after ovariectomy. Photomed Laser Surg 24:642–645

    Article  PubMed  Google Scholar 

  30. Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR (1996) Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res 324:39–46

    Article  PubMed  Google Scholar 

  31. Okubo Y, Bessho K, Fujimura K, Kusumoto K, Ogawa Y, Iizuka T (2000) Osteogenesis by recombinant human bone morphogenetic protein-2 at skeletal sites. Clin Orthop Relat Res 375:295–301

    Article  PubMed  Google Scholar 

  32. Murakami N, Saito N, Horiuchi H, Okada T, Nozaki K, Takaoka K (2002) Repair of segmental defects in rabbit humeri with titanium fiber mesh cylinders containing recombinant human bone morphogenetic protein-2 (rhBMP-2) and a synthetic polymer. J Biomed Mater Res 62:169–174

    Article  PubMed  CAS  Google Scholar 

  33. Issa JP, Pitol DL, Iyomasa MM, Barbosa AP, Defino HL, Volpon JB, Shimano AC, Silva P (2009) Collagen fibers evaluation after rhBMP-2 insertion in critical-sized defects. Micron 40:560–562

    Article  PubMed  CAS  Google Scholar 

  34. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel D, Hewick RM, Kerns KM, LaPan P, Luxenberg DP, Mcquaid D, Moutsatsos IK, Nove J, Wozney JM (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 87:2220–2224

    Article  PubMed  CAS  Google Scholar 

  35. Abdala PM, Iyomasa MM, Sato S, Bentley MV, Pitol DL, Regalo SC, Siéssere S, Issa JP (2010) Osteoinductivity potential of rhBMP-2 associated with two carriers in different dosages. Anat Sci Int 85:181–188

    Article  PubMed  CAS  Google Scholar 

  36. D’Antona P, Parker WO, Zanirato MC, Esposito E, Nastruzzi C (2000) Rheologic and NMR characterization of monoglyceride-based formulations. J Biomed Mater Res 52:40–52

    Article  PubMed  Google Scholar 

  37. Boyd BJ, Whittaker DV, Khoo SM, Davey G (2006) Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309:218–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP - 2008/51480-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Pró-Reitoria de Pesquisa da Universidade de São Paulo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Siéssere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, A.P., de Sousa, L.G., Regalo, S.C.H. et al. Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair. Lasers Med Sci 27, 971–977 (2012). https://doi.org/10.1007/s10103-011-1022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-1022-y

Keywords

Navigation