Skip to main content

Advertisement

Log in

Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We studied peaks of calcium hydroxyapatite (CHA) and protein and lipid CH groups in defects grafted with mineral trioxide aggregate (MTA) treated or not with LED irradiation, bone morphogenetic proteins and guided bone regeneration. A total of 90 rats were divided into ten groups each of which was subdivided into three subgroups (evaluated at 15, 21 and 30 days after surgery). Defects were irradiated with LED light (wavelength 850 ± 10 nm) at 48-h intervals for 15 days. Raman readings were taken at the surface of the defects. There were no statistically significant differences in the CHA peaks among the nonirradiated defects at any of the experimental time-points. On the other hand, there were significant differences between the defects filled with blood clot and the irradiated defects at all time-points (p < 0.001, p = 0.02, p < 0.001). There were significant differences between the mean peak CHA in nonirradiated defects at all the experimental time-points (p < 0.01). The mean peak of the defects filled with blood clot was significantly different from that of the defects filled with MTA (p < 0.001). There were significant differences between the defects filled with blood clot and the irradiated defects (p < 0.001). The results of this study using Raman spectral analysis indicate that infrared LED light irradiation improves the deposition of CHA in healing bone grafted or not with MTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barolet D (2008) Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 27:227–238

    Article  PubMed  CAS  Google Scholar 

  2. Recker RR (1992) Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven, New York, pp 219–240

    Google Scholar 

  3. Muschler GF, Lane JM, Dawson EG (1990) The biology of spinal fusion. In: Cotler JM, Cotler HB (eds) Spinal fusion: science and technique. Springer, Berlin, pp 9–21

    Chapter  Google Scholar 

  4. Prolo DJ (1990) Biology of bone fusion. Clin Neurosurg 36:135–146

    PubMed  CAS  Google Scholar 

  5. Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10:E1

    Article  PubMed  CAS  Google Scholar 

  6. Evans GH, Yukna RA, Cambre KM, Gardiner DL (1997) Clinical regeneration with guided tissue barriers: an analysis of the current literature. Curr Opin Periodontol 4:75–81

    PubMed  CAS  Google Scholar 

  7. Nascimento C, Issa JPM, Oliveira RR, Lyomasa MM, Siéssere S, Regalo SCH (2007) Biomateriales con aplicación en el proceso de reparación óssea. Int J Morphol 25:839–846

    Article  Google Scholar 

  8. Pinheiro AL, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  PubMed  CAS  Google Scholar 

  9. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR (1995) Investigation of mineral trioxide aggregate for root end filling in dogs. J Endod 21:603–608

    Article  PubMed  CAS  Google Scholar 

  10. Torabinejad M, Hong CU, Pitt Ford TR (1995) Physical properties of a new root end filling material. J Endod 21:349–353

    Article  PubMed  CAS  Google Scholar 

  11. Torabinejad M, Chivian N (1999) Clinical applications of mineral trioxide aggregate. J Endod 25:197–205

    Article  PubMed  CAS  Google Scholar 

  12. Schwartz RS, Mauger M, Clement DJ, Walker WA (1990) Mineral trioxide aggregate: a new material for endodontics. J Am Dent Assoc 130:967–975

    Google Scholar 

  13. Bystrom A, Claesson R, Sundqvist G (1985) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 1:170–175

    Article  PubMed  CAS  Google Scholar 

  14. Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F (1999) Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 20:167–173

    Article  PubMed  CAS  Google Scholar 

  15. Park YJ (2000) Enhanced guided bone regeneration by controlled tetracycline release from poly(L-lactide) barrier membranes. J Biomed Mater Res 51:391–397

    Article  PubMed  CAS  Google Scholar 

  16. Whelan HT, Buchmann EV, Whelan NT et al (2001) NASA light emitting diode medical applications: from deep space to deep sea. Space Technol Appl Int Forum 552:35–45

    Google Scholar 

  17. Whelan HT, Connely MD, Hodgson BD et al (2002) NASA light emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg 20:319–324

    Article  PubMed  Google Scholar 

  18. Al-Watban FA, Andres BL (2003) Polychromatic LED therapy in burn healing of non-diabetic and diabetic rats. J Clin Laser Med Surg 21:249–258

    Article  PubMed  Google Scholar 

  19. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  20. Al-Watban FA (1997) Laser acceleration of open skin wound closure in rats and its dosimetric dependence. Lasers Life Sci 7:237–247

    Google Scholar 

  21. Smith KC (2005) Laser (and LED) therapy is phototherapy. Photomed Laser Surg 23:78–80

    Article  PubMed  Google Scholar 

  22. Pinheiro AL, Gerbi ME, Limeira Júnior FA et al (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infrared laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24:234–240

    Article  PubMed  Google Scholar 

  23. Gerbi ME, Marques AM, Ramalho LM et al (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60

    Article  PubMed  Google Scholar 

  24. Pinheiro AL, Gerbi ME, Ponzi EA et al (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26:167–174

    Article  PubMed  CAS  Google Scholar 

  25. Torres CS, Santos JN, Monteiro JS, Amorim PG, Pinheiro AL (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  PubMed  Google Scholar 

  26. Gerbi ME, Pinheiro AL, Ramalho LM (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317

    Article  Google Scholar 

  27. Lopes CB, Pacheco MT, Silveira Junior L, Duarte J, Cangussú MC, Pinheiro AL (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89:125–130

    Article  PubMed  CAS  Google Scholar 

  28. Lopes CB, Pinheiro AL, Sathaiah S, Da Silva NS, Salgado MA (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25:96–101

    Article  PubMed  CAS  Google Scholar 

  29. Weber JB, Pinheiro AL, Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autogenous bone graft. Photomed Laser Surg 24:38–44

    Article  PubMed  Google Scholar 

  30. Lopes CB, Pinheiro AL, Sathaiah S, Ramalho LM (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopy study. Photomed Laser Surg 23:27–31

    Article  PubMed  CAS  Google Scholar 

  31. Gerbi ME, Pinheiro AL, Ramalho LM et al (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388

    Article  PubMed  Google Scholar 

  32. Pinheiro AL, Limeira Júnior FA, Gerbi ME et al (2003) Effect of low level laser therapy on the repair of bone defects grafted with inorganic bovine bone. Braz Dent J 14:177–181

    Article  PubMed  Google Scholar 

  33. Pinheiro AL, Limeira Júnior FA, Gerbi ME et al (2003) Effect of 830-nm laser light on the repair of bone defects grafted with inorganic bovine bone and decalcified cortical osseous membrane. J Clin Laser Med Surg 21:383–388

    Article  Google Scholar 

  34. Pinheiro AL, Oliveira MA, Martins PP (2001) Biomodulação da cicatrização óssea pós-implantar com o uso da laserterapia não-cirúrgica: estudo por microscopia eletrônica de varredura (Biomodulation of peri-implant bone repair with laser therapy: SEM study). Rev FOUFBA 22:12–19

    Google Scholar 

  35. Silva Junior N, Pinheiro AL, Oliveira MG, Weismann R, Ramalho LM, Nicolau RA (2002) Computadorized morphometric assessment of the effect of low-level laser therapy on bone repair: an experimental animal study. J Clin Laser Med Surg 20:83–88

    Article  PubMed  Google Scholar 

  36. Lopes CB, Pacheco MT, Silveira L Jr, Cangussu MC, Pinheiro AL (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: a Raman spectroscopic study. J Biomed Mat Res Part A 94:1257–1263

    Google Scholar 

  37. Pinheiro AL, Aciole GT, Cangussú MC, Pacheco MT, Silveira L Jr (2010) Effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res A 95:1041–1047

    PubMed  Google Scholar 

  38. Movasaghi Z, Rehman S, Ihtesham U, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  39. Kirker-Head CA (2000) Potential applications and delivery strategies for bone morphogenetic proteins. Adv Drug Deliv Rev 43:65–92

    Article  PubMed  CAS  Google Scholar 

  40. Winn SR, Uludag H, Hollinger JO (1999) Carrier systems for bone morphogenetic proteins. Clin Orthop Suppl 367:S95–S106

    Article  Google Scholar 

  41. Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC (1994) Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop 301:302–312

    PubMed  Google Scholar 

  42. Hunt TR, Hsu HH, Morris DC, Schwappach JR, Lark RG, Anderson HC (1993) Healing of a segmental defect in the rat femur using a bone inducing agent (BIA) derived from a cultured human osteosarcoma cell line (Saos-2). Trans Orthop Res Soc 18:489

    Google Scholar 

  43. Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16:247–252

    Article  PubMed  CAS  Google Scholar 

  44. Nakashima M, Reddi AH (2003) The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 21:1025–1032

    Article  PubMed  CAS  Google Scholar 

  45. Kempen DH, Creemers LB, Alblas J, Lu L, Verbout AJ, Yaszemski MJ, Dhert WJ (2010) Growth factor interactions in bone regeneration. Tissue Eng Part B Rev 16:551–566

    Article  PubMed  CAS  Google Scholar 

  46. de Sousa AP, de Aguiar Valença Neto AdeA, Marchionni AM, de Araújo Ramos M, dos Reis Júnior JA, Pereira MC, Cangussú MC, de Almeida Reis SR, Pinheiro AL (2011) Effect of LED phototherapy (λ700 ± 20 nm) on TGF-β expression during wound healing: an immunohistochemical study in a rodent model. Photomed Laser Surg 29:605–611

    Article  Google Scholar 

  47. Rocha Júnior AM, Vieira BJ, Andrade LCF, Aarestrup FM (2009) Low-level laser therapy increases transforming growth factor-β2 expression and induces apoptosis of epithelial cells during the tissue repair process. Photomed Laser Surg 27:303–307

    Article  PubMed  Google Scholar 

  48. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblastic growth factor (bFGF) insulin like growth factor 1 (IGF-1), and receptor of IGF-1 (IGFBP3) for gingival fibroblasts. Lasers Med Sci 23:211–215

    Article  PubMed  Google Scholar 

  49. Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1β, TNF-α, IFN-γ, TGF-β, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23:331–335

    Article  PubMed  Google Scholar 

  50. Ihsan FR (2005) Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg 23:289–294

    Article  PubMed  CAS  Google Scholar 

  51. Cho HS, Park SY, Kim S et al (2008) Effect of different bone substitutes on the concentration of growth factors in platelet-rich plasma. J Biomater Appl 22:545–557

    CAS  Google Scholar 

  52. Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. Chir Organi Mov 92:161–168

    Article  PubMed  Google Scholar 

  53. Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D (2010) Orthopaedic applications of bone graft and graft substitutes: a review. Indian J Med Res 132:15–30

    PubMed  CAS  Google Scholar 

  54. Friedman CD, Costantino PD, Takagi S, Chow LC (1998) BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 43:428–432

    Article  PubMed  CAS  Google Scholar 

  55. Reddi AH, Reddi A (2009) Bone morphogenetic proteins (BMPs): from morphogens to metabologens. Cytokine Growth Factor Rev 20:341–342

    Article  PubMed  CAS  Google Scholar 

  56. Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop 35:1271–1280

    Article  PubMed  Google Scholar 

  57. Urist MR, Dowell TA, Hay PH, Strates BS (1968) Inductive substrates for bone formation. Clin Orthop Relat Res 59:59–96

    Article  PubMed  CAS  Google Scholar 

  58. Wozney JM (2002) Overview of bone morphogenetic proteins. Spine 27:S2

    Article  PubMed  Google Scholar 

  59. Wang EA, Rosen V, D’Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P et al (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 87:2220–2224

    Article  PubMed  CAS  Google Scholar 

  60. Janssens K, ten Dijke P, Janssens S, Van Hul W (2005) Transforming growth factor-beta1 to the bone. Endocr Rev 26:743–774

    Article  PubMed  CAS  Google Scholar 

  61. Desmet KD, Paz DA, Corry JJ et al (2006) clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24:121–128

    Article  PubMed  CAS  Google Scholar 

  62. Lanzafame RJ, Stadler I, Whelan HT (2002) NASA LED photoradiation influences nitric oxide and collagen production in wounded rats. Lasers Surg Med Suppl 14:12

    Google Scholar 

  63. Tachiara R, Farinelli WA, Rox Anderson R (2002) Low intensity light-induced vasodilation in vivo. Lasers Surg Med Suppl 14:11

    Google Scholar 

  64. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18:95–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing financial support for this project.

Conflicts of interest

The authors received a grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a government research agency, but have full control of all primary data and agree to allow the journal to review their data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio L. B. Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinheiro, A.L.B., Soares, L.G.P., Cangussú, M.C.T. et al. Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Lasers Med Sci 27, 903–916 (2012). https://doi.org/10.1007/s10103-011-1010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-1010-2

Keywords

Navigation