Skip to main content

Advertisement

Log in

Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effect of two different surface treatments (Er:YAG laser and bur) and three different numbers of thermal cycling (no aging, 1,000, 5,000, and 10,000 cycles) on the micro-shear bond strength of repaired composite resin. Ninety-six composite blocks (4 mm × 4 mm × 1 mm) obtained with a micromatrix hybrid composite were prepared. The composite blocks were then randomly divided into four groups (n = 24), according to the thermal cycling procedure: (1) stored in distilled water at 37°C for 24 h (control group), (2) 1,000 cycles, (3) 5,000 cycles, and (4) 10,000 cycles. After aging, the blocks were further subdivided into two subgroups (n = 12), according to surface treatment. Bur and laser-treated composite surfaces were treated with an etch&rinse adhesive system. In addition, a microhybrid composite resin was bonded to the surfaces via polyethylene tubing. Specimens were subjected to micro-shear bond strength test by a universal testing machine with a crosshead speed of 0 and 5 mm/min. The data were analyzed using one-way analysis of variance and Tukey tests (α = 0.05) for micro-shear bond strengths. After conducting a bond strength test, it was found that the laser and bur-treated specimens had similar results. Aging with 10,000 thermocycles significantly affected the repair bond strength of composite resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Magni E, Ferrari M, Papacchini F, Hickel R, Ilie N (2011) Influence of ozone on the composite-to-composite bond. Clin Oral Investig 15(2):249–256

    Article  PubMed  Google Scholar 

  2. Yaman BC, Efes BG, Dörter C, Gömeç Y, Erdilek D, Yazıcıoğlu O (2011) Microleakage of repaired class V silorane and nano-hybrid composite restorations after preparation with erbium:yttrium-aluminum-garnet laser and diamond bur. Lasers Med Sci 26(2):163–170

    Article  PubMed  Google Scholar 

  3. Gordan VV (2001) Clinical evaluation of replacement of class V resin based composite restorations. J Dent 29:485–488

    Article  PubMed  CAS  Google Scholar 

  4. Rathke A, Tymina Y, Haller B (2008) Effect of different surface treatments on the composite-composite repair bond strength. Clin Oral Investig 13(3):317–323

    Article  PubMed  Google Scholar 

  5. Güler AU, Sarikaya IB, Güler E, Yücel A (2009) Effect of filler ratio in adhesive systems on the shear bond strength of resin composite to porcelains. Oper Dent 34(3):299–305

    Article  PubMed  Google Scholar 

  6. Fawzy AS, El-Askary FS, Amer MA (2008) Effect of surface treatments on the tensile bond strength of repaired water-aged anterior restorative micro-fine hybrid resin composite. J Dent 36(12):969–976

    Article  PubMed  CAS  Google Scholar 

  7. Vankerckhoven H, Lambrechts P, van Beylen M, Davidson CL, Vanherle G (1982) Unreacted methacrylate groups on the surfaces of composite resins. J Dent Res 61:791–795

    Article  PubMed  CAS  Google Scholar 

  8. Swift EJ Jr, LeValley BD, Boyer DB (1992) Evaluation of new methods for composite repair. Dent Mater 8(6):362–365

    Article  PubMed  Google Scholar 

  9. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA (2007) Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater 23(10):1276–1282

    Article  PubMed  Google Scholar 

  10. Burnett LH Jr, Shinkai RS, Eduardo CP (2004) Tensile bond strength of a one-bottle adhesive system to indirect composites treated with Er:YAG laser, air abrasion, or fluoridric acid. Photomed Laser Surg 22(4):351–356

    Article  PubMed  Google Scholar 

  11. Rossato DM, Bandeca MC, Saade EG, Lizarelli RFZ, Bagnato VS, Saad JRC (2009) Influence of Er:YAG laser on surface treatment of aged composite resin to repair restoration. Laser Physics 19(11):2144–2149

    Article  CAS  Google Scholar 

  12. de Paula Eduardo C, Bello-Silva MS, Moretto SG, Cesar PF, de Freitas PM (2010) Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser. Lasers Med Sci. doi:10.1007/s10103-010-0822-9

  13. Kimyai S, Mohammadi N, Navimipour EJ, Rikhtegaran S (2010) Comparison of the effect of three mechanical surface treatments on the repair bond strength of a laboratory composite. Photomed Laser Surg 28(2):25–30

    Article  Google Scholar 

  14. Shawkat ES, Shortall AC, Addison O, Palin WM (2009) Oxygen inhibition and incremental layer bond strengths of resin composites. Dent Mater 25(11):1338–1346

    Article  PubMed  CAS  Google Scholar 

  15. Ghivari S, Chandak M, Manvar N (2010) Role of oxygen inhibited layer on shear bond strength of composites. J Conserv Dent 13(1):39–41

    Article  PubMed  Google Scholar 

  16. Boyer DB, Chan KC, Torney DL (1978) The strength of multilayer and repaired composite resin. J Prosthet Dent 39:63–67

    Article  PubMed  CAS  Google Scholar 

  17. Craig RG, Powers JM (2002) Restorative Dental Materials, 11th edn. Mosby, USA

    Google Scholar 

  18. Söderholm KJ, Roberts MJ (1991) Variables influencing the repair strength of dental composites. Scand J Dent Res 99:173–180

    PubMed  Google Scholar 

  19. Rinastiti M, Ozcan M, Siswomihardjo W, Busscher HJ (2010) Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins. Clin Oral Investig. doi:10.1007/s00784-010-0426-6

  20. Versluis A, Tantbirojn D, Douglas WH (1997) Why do shear bond tests pull out dentin? J Dent Res 76:1298–1307

    Article  PubMed  CAS  Google Scholar 

  21. Della Bona A, Van Noort R (1995) Shear vs. tensile bond strength of resin composite bonded to ceramic. J Dent Res 74:1591–1596

    Article  PubMed  CAS  Google Scholar 

  22. Shimada Y, Senawongse P, Harnirattisai C, Burrow MF, Nakaoki Y, Tagami J (2002) Bond strength of two adhesive systems to primary and permanent enamel. Oper Dent 27(4):403–409

    PubMed  Google Scholar 

  23. Ishikawa A, Shimada Y, Foxton RM, Tagami J (2007) Micro-tensile and micro-shear bond strengths of current self-etch adhesives to enamel and dentin. Am J Dent 20:161–166

    PubMed  Google Scholar 

  24. Korkmaz Y, Ozel E, Attar N, Bicer CO, Firatli E (2009) Microleakage and scanning electron microscopy evaluation of all-in-one self-etch adhesives and their respective nanocomposites prepared by erbium:yttrium-aluminum-garnet laser and bur. Lasers Med Sci 25(4):493–502

    Article  PubMed  Google Scholar 

  25. Hatibovic-Kofman S, Wright GZ, Braverman I (1998) Microleakage of sealants after conventional, bur, and air-abrasion preparation of pits and fissures. Pediatr Dent 20:173–176

    PubMed  CAS  Google Scholar 

  26. Lizarelli RF, Moriyama LT, Bagnato VS (2003) Ablation of composite resins using Er:YAG laser–comparison with enamel and dentin. Lasers Surg Med 33(2):132–139

    Article  Google Scholar 

  27. Brosh T, Pilo R, Bichacho N, Blutstein R (1997) Effect of combinations of surface treatments and bonding agents on the bond strength of repaired composites. J Prosthet Dent 77:122–126

    Article  PubMed  CAS  Google Scholar 

  28. Nilsoon E, Alaeddin S (2000) Factors affecting the shear bond strength of bonded composite inlays. Int J Prosthodont 13:52–58

    Google Scholar 

  29. Bonstein T, Garlapo D, Donarummo J Jr, Bush PJ (2005) Evaluation of varied repair protocols applied to aged composite resin. J Adhes Dent 7(1):41–49

    PubMed  CAS  Google Scholar 

  30. Yesilyurt C, Kusgoz A, Bayram M, Ulker M (2009) Initial repair bond strength of a nano-filled hybrid resin: effect of surface treatments and bonding agents. J Esthet Restor Dent 21(4):251–260

    Article  PubMed  Google Scholar 

  31. Lucena-Martín C, González-López S, Navajas-Rodríguez de Mondelo JM (2001) The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J Prosthet Dent 86:481–488

    Article  PubMed  Google Scholar 

  32. Swift EJ Jr, Cloe BC, Boyer DB (1994) Effect of a silane coupling agent on composite repair strengths. Am J Dent 7:200–202

    PubMed  Google Scholar 

  33. Alexander R, Xie J, Fried D (2002) Selective removal of residual composite from dental enamel surfaces using the third harmonic of a Q-switched Nd:YAG laser. Lasers Surg Med 30:240–245

    Article  PubMed  Google Scholar 

  34. Lizarelli RFZ, Moriyama LT, Pelino JEP, Bagnato VS (2005) Ablation rate and morphological aspects of composite resins exposed to Er:YAG laser. J Oral Laser App 5(3):151–160

    Google Scholar 

  35. Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, Marchi GM (2009) Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg 27(3):473–479

    Article  PubMed  CAS  Google Scholar 

  36. Attin T, Buchalla W, Kielbassa AM, Helwig E (1995) Curing shrinkage and volumetric changes of resin-modified glass ionomer restorative materials. Dent Mater 11:359–362

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki S, Ori T, Saimi Y (2005) Effects of filler composition on flexibility of microfilled resin composite. J Biomed Mater Res B Appl Biomater 74:547–552

    PubMed  CAS  Google Scholar 

  38. Amaral FL, Colucci V, Palma-Dibb RG, Corona SA (2007) Assessment of in vitro methods used to promote adhesive interface degradation: a critical review. J Esthet Restor Dent 19(6):340–353

    Article  PubMed  Google Scholar 

  39. Xie C, Han Y, Zhao XY, Wang ZY, He HM (2010) Microtensile bond strength of one- and two-step self-etching adhesives on sclerotic dentin: the effects of thermocycling. Oper Dent 35(5):547–555

    Article  PubMed  Google Scholar 

  40. Nikaido T, Kunzelmann KH, Chen H, Ogata M, Harada N, Yamaguchi S, Cox CF, Hickel R, Tagami J (2002) Evaluation of thermal cycling and mechanical loading on bond strength of a self-etching primer system to dentin. Dent Mater 18(3):269–275

    Article  PubMed  CAS  Google Scholar 

  41. Gale MS, Darvell BW (1999) Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27(2):89–99

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özden Özel Bektas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özel Bektas, Ö., Eren, D., Herguner Siso, S. et al. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin. Lasers Med Sci 27, 723–728 (2012). https://doi.org/10.1007/s10103-011-0958-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-011-0958-2

Keywords

Navigation