Skip to main content

Advertisement

Log in

Pulsed photothermal temperature profiling of agar tissue phantoms

  • Original article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We determine experimentally the accuracy of pulsed photothermal radiometric (PPTR) temperature depth profiling in water-based samples. We use custom tissue phantoms composed of agar gel layers separated by very thin absorbing layers. Two configurations of the acquisition system are compared, one using the customary spectral band of the InSb radiation detector (3.0–5.5 μm) and the other with a spectrally narrowed acquisition band (4.5–5.5 μm). The laser-induced temperature depth profiles are reconstructed from measured radiometric signals using a custom minimization algorithm. The results correlate very well with phantom geometry as determined by optical coherence tomography (OCT) and histology in all evaluated samples. Determination of the absorbing layer depth shows good repeatability with spatial resolution decreasing with depth. Spectral filtering improves the accuracy and resolution, especially for shallow absorption layers (∼120 μm) and more complex structures (e.g., with two absorbing layers). The average full width at half maximum (FWHM) of the temperature peaks equals 23% of the layer depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Gemert MJC, Nelson JS, Milner TE, Smithies DJ, Verkruysse W, de Boer JF, Lucassen GW, Goodman DM, Tanenbaum BS, Norvang LT, Svaasand LO (1997) Non-invasive determination of port wine stain anatomy and physiology for optimal laser treatment strategies. Phys Med Biol 42:937–950

    Article  PubMed  Google Scholar 

  2. Verkruysse W, Majaron B, Tanenbaum BS, Nelson JS (2000) Optimal cryogen spray cooling parameters for pulsed laser treatment of port wine stains. Lasers Surg Med 27:165–170

    Article  PubMed  CAS  Google Scholar 

  3. Long FH, Anderson RR, Deutch TF (1987) Pulsed photothermal radiometry for depth profiling of layered media. Appl Phys Lett 51:2076–2078

    Article  Google Scholar 

  4. Jacques SL, Nelson JS, Wright WH, Milner TE (1993) Pulsed photothermal radiometry of portwine-stain lesions. Appl Opt 32:2439–2446

    Google Scholar 

  5. Bindra RMS, Imhof RE, Eccleston GM (1994) In vivo opto-thermal measurement of epidermal thickness. J Phys IV C7:445–448

    Google Scholar 

  6. Milner TE, Goodman DM, Tanenbaum BS, Nelson JS (1995) Depth profiling of laser-heated chromophores in biological tissues by pulsed photothermal radiometry. J Opt Soc Am A 12:1479–1488

    CAS  Google Scholar 

  7. Vitkin IA, Wilson BC, Anderson RR (1995) Analysis of layered scattering materials by pulsed photothermal radiometry-application to photon propagation in tissue. Appl Opt 34:2973–2982

    Google Scholar 

  8. Milner TE, Smithies DJ, Goodman DM, Lau A, Nelson JS (1996) Depth determination of chromophores in human skin by pulsed photothermal radiometry. Appl Opt 35:3379–3385

    Article  Google Scholar 

  9. Sathyam US, Prahl SA (1997) Limitations in measurement of subsurface temperatures using pulsed photothermal radiometry. J Biomed Opt 2:251–261

    Article  Google Scholar 

  10. Smithies DJ, Milner TE, Tanenbaum BS, Goodman DM, Nelson JS (1998) Accuracy of subsurface distributions computed from pulsed photothermal radiometry. Phys Med Biol 43:2453–2463

    Article  PubMed  CAS  Google Scholar 

  11. Majaron B, Verkruysse W, Tanenbaum BS, Milner TE, Telenkov SA, Goodman DM, Nelson JS (2000) Combining two excitation wavelengths for pulsed photothermal profiling of hypervascular lesions in human skin. Phys Med Biol 45:1913–1922

    Article  PubMed  CAS  Google Scholar 

  12. Majaron B, Verkruysse W, Tanenbaum BS, Milner TE, Nelson JS (2002) Spectral variation of infrared absorption coefficient in pulsed photothermal profiling of biological samples. Phys Med Biol 47:1929–1946

    Article  PubMed  Google Scholar 

  13. Choi B, Majaron B, Nelson JS (2004) Computational model to evaluate port wine stain depth profiling using pulsed photothermal radiometry. J Biomed Opt 9:299–307

    Article  PubMed  Google Scholar 

  14. Majaron B, Milanič M, Choi B, Nelson JS (2004) Selection of optimal infrared detector for pulsed photothermal profiling of vascular lesions. Proc SPIE 5318:121–132

    Article  Google Scholar 

  15. Majaron B, Milanič M (2007) Re-evaluation of pulsed photothermal radiometric profiling in samples with spectrally varied infrared absorption coefficient. Phys Med Biol 52:1089–1101

    Article  PubMed  Google Scholar 

  16. Wilson BC (1995) Measurement of tissue optical properties: methods and theories. In: Welch JA (ed) Optical-thermal response of laser-irradiated tissue. Plenum, New York, pp 233–271

    Google Scholar 

  17. Hanke M (1995) Conjugate gradient type method for Ill-posed problems. Longman Scientific & Technical, Harlow

    Google Scholar 

  18. Calvetti D, Landi G, Reichel L, Sagallari F (2004) Non-negativity and iterative methods for ill-posed problems. Inverse Probl 20:1747–1758

    Article  Google Scholar 

  19. Majaron B, Milanič M (2006) Effective infrared absorption coefficient for photothermal radiometric measurements in biological tissues. Lasers Surg Med Suppl 18:4

    Google Scholar 

  20. Kim J, Oh J, Milner TE, Nelson JS (2006) Hemoglobin contrast in magnetomotive optical Doppler tomography. Opt Lett 6:778–780

    Article  Google Scholar 

  21. Vitkin IA, Wilson BC, Anderson RR, Prahl SA (1994) Pulsed photothermal radiometry in optically transparent media containing discrete optical absorbers. Phys Med Biol 39:1721–1744

    Article  PubMed  CAS  Google Scholar 

  22. Viator JA, Choi B, Peavy GM, Kimel S, Nelson JS (2003) Spectra from 2.5–15 μm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin. Phys Med Biol 48:N15–N24

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Bernard Choi for help with PPTR instrumentation, Dr. Jeehyun Kim for assistance with OCT imaging, and Lih-Huei L. Liaw, MS, for expertise regarding histology. This project was supported by the Slovenian Research Agency, National Institutes of Health (AR47551 and AR48458), and Beckman Laser Institute institutional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Milanič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milanič, M., Majaron, B. & Nelson, J.S. Pulsed photothermal temperature profiling of agar tissue phantoms. Lasers Med Sci 22, 279–284 (2007). https://doi.org/10.1007/s10103-007-0455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-007-0455-9

Keywords

Navigation