Skip to main content
Log in

Ecofriendly geopolymer concrete: a comprehensive review

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

After ordinary Portland cement (OPC) concrete, geopolymer concrete (GPC) is the most advanced form of concrete. GPC has many advantages including improved strength and durability properties. High early age strength and ambient curing of GPC helps to reduce the construction time. Factors such as binder materials, alkali-activated solution, and curing methods control GPC’s strength properties. Moreover, when industrial byproducts such as fly ash and ground granulated blast-furnace slag (GGBS) are added to GPC, this leads to advantages such as reduced carbon dioxide emission, ability to reuse of waste materials, thus saving valuable lands from getting converted into dump yards, cost reduction, and so on. Moreover, the energy required for the extraction of raw materials is also reduced. In this paper, GPC’s strength and durability characteristics, its mix design procedure, its effect of fibers on mechanical properties, and its structural performance are comprehensively reviewed. Moreover, the development of high-strength GPC using fly ash with sodium hydroxide as an alkaline solution under oven curing condition is highlighted. To develop GPC from different binder materials, trial and error methods are proposed. Rangan’s mix design procedure is used for fly ash-based GPC. Moreover, the inclusion of fibers, it was found, improves the ductile nature of GPC. Suggestions and scope for future GPC-related research are also included.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source materials

Fig. 2

Similar content being viewed by others

References

  • Abbas R, Khereby MA, Ghorab HY, Elkhoshkhany N (2020) Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol Environ Policy, 1–19.

  • Abdul Rahim RH, Rahmiati T, Azizli KA, Man Z, Nuruddin MF, Ismail L (2014). Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties. Mater Sci Forum, vol 803.

  • Aboshia AMA, Rahmat RA, Zain MFM, Ismail A (2017) Enhancing mortar strengths by ternary geopolymer binder of metakaolin, slag, and palm ash. Int J Build Pathol Adapt 35(5):438–455

    Article  Google Scholar 

  • Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331

    Article  Google Scholar 

  • Akhtar A, Sarmah AK (2018) Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties. Sci Total Environ 616:408–416

    Article  CAS  Google Scholar 

  • Albitar M, Ali MM, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136:374–385

    Article  CAS  Google Scholar 

  • Aldred, J., & Day, J. (2012, August). Is geopolymer concrete a suitable alternative to traditional concrete. In 37th Conference on our world in concrete and structures, Singapore, pp 29–31

  • Alomayri T, Shaikh FUA, Low IM (2013) Characterisation of cotton fiber-reinforced geopolymer composites. Compos B Eng 50:1–6

    Article  CAS  Google Scholar 

  • Alonso S, Palomo A (2001) Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater Lett 47(1–2):55–62

    Article  CAS  Google Scholar 

  • Amran YM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete. A rev J Cleaner Prod 251:119679

    Article  CAS  Google Scholar 

  • Andalib R, Hussin MW, Majid MZA, Azrin M, Ismail HH (2014) Structural performance of sustainable waste palm oil fuel ash-fly ash geo-polymer concrete beams. J Environ Treat Tech 2(3):115–119

    Google Scholar 

  • Anuradha, R., Sreevidya, V., Venkatasubramani, R., &Rangan, B. V. (2012). Modified guidelines for geopolymer concrete mix design using Indian standard.

  • Assi L, Carter K, Deaver EE, Anay R, Ziehl P (2018) Sustainable concrete: building a greener future. J Clean Prod 198:1641–1651

    Article  CAS  Google Scholar 

  • Bajpai R, Kailash C, Anshuman S, Kuldip SS, Manpreet S (2020) Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J Clean Prod 254:120147

    Article  CAS  Google Scholar 

  • Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35(4):658–670

    Article  CAS  Google Scholar 

  • Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cement Conc Res 36(6):1134–1147

    Article  CAS  Google Scholar 

  • Bernal SA, de Gutiérrez RM, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108

    Article  Google Scholar 

  • Bignozzi MC, Manzi S, Natali ME, Rickard WD, Van Riessen A (2014) Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio. Constr Build Mater 69:262–270

    Article  CAS  Google Scholar 

  • Brew DRM, MacKenzie KJD (2007) Geopolymer synthesis using fumed silica and sodium aluminate. J Mater Sci 42(11):3990–3993

    Article  CAS  Google Scholar 

  • Chen R, Ahmari S, Zhang L (2014) Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J Mater Sci 49(6):2548–2558

    Article  CAS  Google Scholar 

  • Chi M (2012) Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater 35:240–245

    Article  Google Scholar 

  • Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cement Concr Compos 29(3):224–229

    Article  CAS  Google Scholar 

  • Chindaprasirt P, Rattanasak U, Taebuanhuad S (2013) Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater Struct 46(3):375–381

    Article  CAS  Google Scholar 

  • Cuthbertson D, Berardi U, Briens C, Berruti F (2019) Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenerg 120:77–83

    Article  CAS  Google Scholar 

  • Davidovits J (2013) Geopolymer cement. A review. Geopolymer Institute, Technical papers, 21:1–11

  • De Silva P, Sagoe-Crenstil K, Sirivivatnanon V (2007) Kinetics of geopolymerization: role of Al2O3 and SiO2. Cem Concr Res 37(4):512–518

    Article  CAS  Google Scholar 

  • Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 1980–2015(62):32–39

    Article  CAS  Google Scholar 

  • Detphan S, Chindaprasirt P (2009) Preparation of fly ash and rice husk ash geopolymer. Int J Miner Metall Mater 16(6):720–726

    CAS  Google Scholar 

  • Devika CP, andDeepthi, R. N. (2015) Study of flexural behavior of hybrid fibre reinforced geopolymer concrete beam. J Int J Sci Res 4:130–135

    Google Scholar 

  • Dhakal M, Al-Masud M, Alam S, Montes C, Kupwade-Patil K, Allouche E, Saber A Design, fabrication and testing of a full-scale geopolymer concrete median barrier.

  • Diaz EI, Allouche EN, Eklund S (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89(5):992–996

    Article  CAS  Google Scholar 

  • Dixit A, Gupta S, Dai Pang S, Kua HW (2019) Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. J Clean Prod 238:117876

    Article  Google Scholar 

  • Ganesan N, Abraham R, Raj SD (2015a) Durability characteristics of steel fibre reinforced geopolymer concrete. Constr Build Mater 93:471–476

    Article  Google Scholar 

  • Ganesan N, Abraham R, Deepa Raj S, Namitha K (2015b) Effect of fibres on the strength and behaviour of GPC columns. Mag Concr Res 68(2):99–106

    Article  Google Scholar 

  • Ganesh AC, Muthukannan M (2021) Development of high performance sustainable optimized fiber reinforced geopolymer concrete and prediction of compressive strength. J Clean Prod 282:124543

    Article  CAS  Google Scholar 

  • Ghafoor MT, Khan QS, Qazi AU, Neaz Sheikh M, Hadi MNS (2021) Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr Build Mater 273:121752

    Article  CAS  Google Scholar 

  • Görhan G, Kürklü G (2014) The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Compos B Eng 58:371–377

    Article  CAS  Google Scholar 

  • Gourley JT (2003) Geopolymers, opportunities for environmentally friendly construction materials, conference, adaptive materials for a modern society. Sydney Inst Mater Eng Australia 15–26:49

    Google Scholar 

  • Gourley JT, Johnson GB (2005) Developments in geopolymer precast concrete. World Congress Geopolymer, pp 139–143

  • Granizo ML, Blanco-Varela MT, Martínez-Ramírez S (2007) Alkali activation of metakaolins: parameters affecting mechanical, structural and microstructural properties. J Mater Sci 42(9):2934–2943

    Article  CAS  Google Scholar 

  • Granizo ML, Blanco-Varela MT, Palomo A (2000) Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry. J Mater Sci 35(24):6309–6315.

  • Liang G, Yueyue Wu, Fang Xu, Song X, Ye J, Duan P, Zhang Z (2020) Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites. Compos B Eng 183:107689

    Article  CAS  Google Scholar 

  • Haddad RH, Alshbuol O (2016) Production of geopolymer concrete using natural pozzolan: a parametric study. Constr Build Mater 114:699–707

    Article  CAS  Google Scholar 

  • Hadi MN, Farhan NA, Sheikh MN (2017) Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr Build Mater 140:424–431

    Article  CAS  Google Scholar 

  • Hanle LJ, Jayaraman KR, Smith JS (2004) CO2 emissions profile of the US cement industry. Environmental Protection Agency, Washington

    Google Scholar 

  • Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete.

  • Hardjito D, Wallah SE, Sumajouw DM, Rangan BV (2004) On the development of fly ash-based geopolymer concrete. Mater J 101(6):467–472

    CAS  Google Scholar 

  • He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118

    Article  CAS  Google Scholar 

  • He P, Jia D, Lin T, Wang M, Zhou Y (2010) Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int 36(4):1447–1453

    Article  CAS  Google Scholar 

  • Heah CY, Kamarudin H, Al Bakri AM, Binhussain M, Luqman M, IK, Nizar, Ruzaidi CM, Liew YM (2011) Effect of curing profile on kaolin-based geopolymers. Phys Procedia 22:305–311

    Article  CAS  Google Scholar 

  • Ivan Diaz-Loya E, Allouche EN, Vaidya S (2011) Mechanical Properties of Fly-Ash-Based Geopolymer Concrete. ACI Mater J 108(3):300

    Google Scholar 

  • Junaid MT, Kayali O, Khennane A, Black J (2015) A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr Build Mater 79:301–310

    Article  Google Scholar 

  • Karim MR, Zain MFM, Jamil M, Lai FC (2013) Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Constr Build Mater 49:894–902

    Article  Google Scholar 

  • Karthik A, Sudalaimani K, Vijayakumar CT (2017) Durability study on coal fly ash-blast furnace slag geopolymer concretes with bio-additives. Ceram Int 43(15):11935–11943

    Article  CAS  Google Scholar 

  • Kastiukas G, Ruan S, Liang S, Zhou X (2020) Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment. J Clean Prod 255:120290

    Article  CAS  Google Scholar 

  • Kathirvel P, Kaliyaperumal SRM (2016) Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Constr Build Mater 102:51–58

    Article  CAS  Google Scholar 

  • Khater HM (2013) Effect of fumed silica on the characterization of the geopolymer materials. Int J Adv Struct Eng 5(1):12

    Article  CAS  Google Scholar 

  • Komnitsas KA (2011) Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng 21:1023–1032

    Article  Google Scholar 

  • Kong DL, Sanjayan JG (2010) Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cem Concr Res 40(2):334–339

    Article  CAS  Google Scholar 

  • Kupaei RH, Alengaram UJ, Jumaat MZB, Nikraz H (2013) Mix design for fly ash based oil palm shell geopolymer lightweight concrete. Constr Build Mater 43:490–496

    Article  Google Scholar 

  • Lee NK, Lee HK (2013) Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater 47:1201–1209

    Article  Google Scholar 

  • Lee NK, Lee HK (2015) Reactivity and reaction products of alkali-activated, fly ash/slag paste. Constr Build Mater 81:303–312

    Article  Google Scholar 

  • Lee NK, An GH, Koh KT, Ryu GS (2016) Improved reactivity of fly ash-slag geopolymer by the addition of fumed silica. Adv Mater Sci Eng, 2016.

  • Lee WKW, Van Deventer JSJ (2002) The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surf A 211(2–3):115–126

    Article  CAS  Google Scholar 

  • Li W, Xu J (2009) Mechanical properties of basalt fiber reinforced geopolymeric concrete under impact loading. Mater Sci Eng A 505(1–2):178–186

    Article  CAS  Google Scholar 

  • Liu Y, Shi C, Zhang Z, Li N, Shi D (2020) Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement Concr Compos 112:103665

    Article  CAS  Google Scholar 

  • Madheswaran CK, Ambily PS, Rajamane NP, Arun G (2014) Studies on flexural behaviour of reinforced geopolymer concrete beams with lightweight aggregates. Int J Civ Struct Eng 4(3):295

    Google Scholar 

  • Maroušek J, Vochozka M, Plachý J, Žák J (2017) Glory and misery of biochar. Clean Technol Environ Policy 19(2):311–317

    Article  CAS  Google Scholar 

  • Maroušek J, Kolář L, Strunecký O, Kopecký M, Bartoš P, Maroušková A, Vaníčková R (2020) Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J Clean Prod 272:123015

    Article  CAS  Google Scholar 

  • Mathew BJ, Sudhakar M, Natarajan C (2013) Strength, economic and sustainability characteristics of coal ash–GGBS based geopolymer concrete. Int J Comput Eng Res 3(1):207–212

    Google Scholar 

  • McLellan BC, Williams RP, Lay J, Van Riessen A, Corder GD (2011) Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J Clean Prod 19(9–10):1080–1090

    Article  CAS  Google Scholar 

  • Meesala CR, Verma NK, Kumar S (2020) Critical review on fly-ash based geopolymer concrete. Struct Concr 21(3):1013–1028

    Article  Google Scholar 

  • Moradikhou AB, Esparham A, Avanaki MJ (2020) Physical and mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr Build Mater 251:118965

    Article  CAS  Google Scholar 

  • Nadoushan MJ, Ramezanianpour AA (2016) The effect of type and concentration of activators on flowability and compressive strength of natural pozzolan and slag-based geopolymers. Constr Build Mater 111:337–347

    Article  CAS  Google Scholar 

  • Nagan S, Mohana R (2014) Behaviour of geopolymer ferrocement slabs subjected to impact. Iran J Sci Technol Trans A Sci 38:223

    Google Scholar 

  • Narayanan A, Shanmugasundaram P (2017) An experimental investigation on flyash-based geopolymer mortar under different curing regime for thermal analysis. Energy Buildings 138:539–545

    Article  Google Scholar 

  • Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171

    Article  Google Scholar 

  • Nazari A, Bagheri A, Riahi S (2011) Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater Sci Eng A 528(24):7395–7401

    Article  CAS  Google Scholar 

  • Nematollahi B, Sanjayan J (2014) Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater Des 57:667–672

    Article  CAS  Google Scholar 

  • Ng TS, Foster SJ (2013) Development of a mix design methodology for high-performance geopolymer mortars. Struct Concr 14(2):148–156

    Article  Google Scholar 

  • Nguyen KT, Le TA, Lee K (2016) Experimental study on flexural strength of reinforced geopolymer concrete beams. A-A 8:150

    Google Scholar 

  • Olivia M, Nikraz H (2012) Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des 1980–2015(36):191–198

    Article  CAS  Google Scholar 

  • Panda R, Sagarika P, Mohanty AM (2020) Geopolymer Concrete: an Emerging Green Material for Modern Construction. Int J Eng Adv Technol, pp 4046–4050.

  • Pangdaeng S, Phoo-ngernkham T, Sata V, Chindaprasirt P (2014) Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater Des 53:269–274

    Article  CAS  Google Scholar 

  • Pasupathy K, Berndt M, Sanjayan J, Rajeev P, Cheema DS (2017) Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment. Cem Concr Res 100:297–310

    Article  CAS  Google Scholar 

  • Patil S, Karikatti V, Chitawadagi M (2018) Granulated blast-furnace slag (GGBS) based geopolymer concrete-review. Int J Adv Sci Eng 5(1):879–885

    Article  Google Scholar 

  • Perera DS, Uchida O, Vance ER, Finnie KS (2007) Influence of curing schedule on the integrity of geopolymers. J Mater Sci 42(9):3099–3106

    Article  CAS  Google Scholar 

  • Rajarajeswari A, Dhinakaran G (2016) Compressive strength of GGBFS based GPC under thermal curing. Constr Build Mater 126:552–559

    Article  CAS  Google Scholar 

  • Rajendran M, Soundarapandian N (2013) An Experimental investigation on the flexural behavior of geopolymer ferrocement slabs. J Eng Technol, 3(2).

  • Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 22(12):1073–1078

    Article  CAS  Google Scholar 

  • Rattanasak U, Pankhet K, Chindaprasirt P (2011) Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int J Miner Metall Mater 18(3):364

    Article  CAS  Google Scholar 

  • Saranya P, Nagarajan P, Shashikala AP (2019) Development of ground-granulated blast-furnace slag-dolomite geopolymer concrete. ACI Mater J 116(6)

  • Shahmansouri AA, Bengar HA, Ghanbari S (2020) Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J Build Eng 31:101326

    Article  Google Scholar 

  • Shahmansouri AA, Yazdani M, Ghanbari S, Bengar HA, Jafari A, Ghatte HF (2021) Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 279:123697

    Article  CAS  Google Scholar 

  • Shaikh FU (2014) Effects of alkali solutions on corrosion durability of geopolymer concrete. Adv Conc Const 2(2):109–123

    Google Scholar 

  • Sindhunata S (2006) A conceptual model of geopolymerisation.

  • Škapa S, Vochozka M (2019) Techno-economic considerations: turning fermentation residues into lightweight concrete. Energy Sourc Part A Recovery Utilization Environ Effects 41(9):1041–1048

    Article  Google Scholar 

  • Sofi M, Van Deventer JSJ, Mendis PA, Lukey GC (2007) Engineering properties of inorganic polymer concretes (IPCs). Cem Concr Res 37(2):251–257

    Article  CAS  Google Scholar 

  • Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90(6):2118–2124

    Article  CAS  Google Scholar 

  • Songpiriyakij S, Kubprasit T, Jaturapitakkul C, Chindaprasirt P (2010) Compressive strength and degree of reaction of biomass-and fly ash-based geopolymer. Constr Build Mater 24(3):236–240

    Article  Google Scholar 

  • Srinivasan K, Sivakumar A (1819) Strength properties of geopolymer mortar containing binary and ternary blends of bentonite.

  • Srinivasan S, Karthik A, Nagan DRS (2014) An investigation on flexural behaviour of glass fibre reinforced geopolymer concrete beams. Int J Eng Sci Res Technol 3(4):1963–1968

    Google Scholar 

  • Sukmak P, Horpibulsuk S, Shen SL (2013) Strength development in clay–fly ash geopolymer. Constr Build Mater 40:566–574

    Article  Google Scholar 

  • Sumajouw M, Rangan BV (2006) Low-calcium fly ash-based geopolymer concrete: reinforced beams and columns.

  • Sun P, Wu HC (2008) Transition from brittle to ductile behavior of fly ash using PVA fibers. Cement Concr Compos 30(1):29–36

    Article  CAS  Google Scholar 

  • Talakokula V, Singh R, Vysakh K (2015) Effect of delay time and duration of steam curing on compressive strength and microstructure of geopolymer concrete. Adv Struct Eng, pp 1635–1641. Springer, New Delhi

  • Temuujin JV, Van Riessen A, Williams R (2009) Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J Hazard Mater 167(1–3):82–88

    Article  CAS  Google Scholar 

  • Tennakoon C, Shayan A, Sagoe-Crentsil K, Sanjayan JG (2014) Importance of reactive SiO2, AlO3 and Na2O in geopolymer formation. In: Austroads Bridge Conference, 9th, 2014, Sydney, New South Wales, Australia (No. 7.3).

  • Tennakoon C, Shayan A, Sanjayan JG, Xu A (2017) Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater Des 116:287–299

    Article  CAS  Google Scholar 

  • Thaarrini J, Dhivya S Comparative study on the production cost of geopolymer and conventional concretes.

  • Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130

    Article  Google Scholar 

  • Uehara M (2010) New concrete with low environmental load using the geopolymer method. Q Rep RTRI 51(1):1–7

    Article  Google Scholar 

  • Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2002) The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers. Chem Eng J 89(1–3):63–73

    Article  Google Scholar 

  • Verma M, Nirendra D (2021) Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Struct Conc

  • Xie J, Kayali O (2016) Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers. Constr Build Mater 122:36–42

    Article  CAS  Google Scholar 

  • Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59(3):247–266

    Article  CAS  Google Scholar 

  • Yip CK, Lukey GC, Van Deventer JSJ (2005) The co-existence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35(9):1688–1697

    Article  CAS  Google Scholar 

  • Zhang B, MacKenzie KJ, Brown IW (2009) Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate. J Mater Sci 44(17):4668–4676

    Article  CAS  Google Scholar 

  • Zhang YJ, Li S, Wang BQ, Xu GM, Yang DF, Wang N, Wang YC (2010) A novel method for preparation of organic resins reinforced geopolymer composites. J Mater Sci 45(5):1189–1192

    Article  CAS  Google Scholar 

  • Zhao Q, Nair B, Rahimian T, Balaguru P (2007) Novel geopolymer based composites with enhanced ductility. J Mater Sci 42(9):3131–3137

    Article  CAS  Google Scholar 

  • Zuhua Z, Xiao Y, Huajun Z, Yue C (2009) Role of water in the synthesis of calcined kaolin-based geopolymer. Appl Clay Sci 43(2):218–223

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thankfully acknowledge the financial support provided by Kerala State Council for Science, Technology and Environment [TDAP/01/2017/KSCSTE], Kerala, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saranya Parathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parathi, S., Nagarajan, P. & Pallikkara, S.A. Ecofriendly geopolymer concrete: a comprehensive review. Clean Techn Environ Policy 23, 1701–1713 (2021). https://doi.org/10.1007/s10098-021-02085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-021-02085-0

Keywords

Navigation