Skip to main content

Advertisement

Log in

Biochar farming: defining economically perspective applications

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Biochar refers to the high-carbon, black fine-grained product of biomass pyrolysis. Independent studies repeatedly confirmed that its incorporation into arable land is a reliable carbon sequestration method that significantly improves soil quality. The latest development leads to a reduction in the production cost (− 10 to 30 USD t−1); however, the use of biochar in commercial agriculture remains scarce. The reason is that biochar can substitute lower-quality charcoals (150–300 USD t−1). Therefore, farmers tend to sell their biowaste for energy purposes, respectively, preferring a quick profit over the forgotten soil-improving practices, which hold long-term benefits. A review of the current state of the art was performed in order to search directions toward the most profitable biochar farming applications. There are indications that a promising direction might be its on-farm production followed by on-farm use and nutrient recycling, or more precisely, special fertilization applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajayi AE, Horn R (2016) Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil Till Res 164:34–44

    Article  Google Scholar 

  • Akhtar A, Sarmah AK (2018) Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties. Sci Total Environ 616:408–416

    Article  CAS  Google Scholar 

  • Angst TE, Sohi SP (2013) Establishing release dynamics for plant nutrients from biochar. Gcb Bioenergy 5:221–226

    Article  CAS  Google Scholar 

  • Bamminger C, Poll C, Högy P, Kandeler E, Marhan S (2015) The role of biochar and elevated soil temperature in affecting microbial abundance and growth of Brassica napus in an agroecosystem. In: Presentation, “Soil biota: diversity and habitats” conference of the Commission III of the German Soil Science Society, Bremen

  • Barber ST, Yin J, Draper K, Trabold TA (2018) Closing Nutrient cycles with biochar-from filtration to fertilizer. J Clean Prod 197:1597–1606

    Article  CAS  Google Scholar 

  • Batista EM, Shultz J, Matos TT, Fornari MR, Ferreira TM, Szpoganicz B, Mangrich AS (2018) Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Sci Rep UK 8:10677

    Article  CAS  Google Scholar 

  • Bezerra J, Turnhout E, Vasquez IM, Rittl TF, Arts B, Kuyper TW (2016) The promises of the Amazonian soil: shifts in discourses of Terra Preta and biochar. J Environ Pol Plan. https://doi.org/10.1080/1523908X.2016.1269644

    Article  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Bruckman VJ (2016) Biochar. Cambridge University Press

  • Bruun E, Cross A, Hammond J, Nelissen V, Rasse DP, Hauggaard-Nielsen H (2016) Biochar carbon stability and effect on greenhouse gas emissions. In: Shackley S, Ruysschaert G, Zwart K, Glaser B (eds) Biochar in European soils and agriculture. Routledge, London, pp 187–205

    Google Scholar 

  • Campbell RM, Anderson NM, Daugaard DE, Naughton HT (2018) Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Appl Energy 230:330–343

    Article  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634

    Article  Google Scholar 

  • Chen D, Mei J, Li H, Li Y, Lu M, Ma T, Ma Z (2017) Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour Technol 228:62–68

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610

    Article  CAS  Google Scholar 

  • Debono O, Villot A (2015) Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes. J Anal Appl Pyrol 114:222–234

    Article  CAS  Google Scholar 

  • Demirbas A, Pehlivan E, Altun T (2006) Potential evolution of Turkish agricultural residues as bio-gas, bio-char and bio-oil sources. Int J Hydrogen Energ 31:613–620

    Article  CAS  Google Scholar 

  • El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, Sarmah AK, Ok YS (2019) Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536–554

    Article  CAS  Google Scholar 

  • Ennis CJ, Evans AG, Islam M, Ralebitso-Senior TK, Senior E (2012) Biochar: carbon sequestration, land remediation, and impacts on soil microbiology. Crit Rev Environ Sci Technol 42:2311–2364

    Article  CAS  Google Scholar 

  • Fang Y, Singh B, Singh BP (2015) Effect of temperature on biochar priming effects and its stability in soils. Soil Biol Biochem 80:136–145

    Article  CAS  Google Scholar 

  • Fytili D, Zabaniotou A (2018) Circular economy synergistic opportunities of decentralized thermochemical systems for bioenergy and biochar production fueled with agro-industrial wastes with environmental sustainability and social acceptance: a review. Curr Sustain Renew Energy Rep. https://doi.org/10.1007/s40518-018-0109-5

    Article  Google Scholar 

  • Głodowska M, Husk B, Schwinghamer T, Smith D (2016) Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron Sustain Dev. https://doi.org/10.1007/s13593-016-0356-z

    Article  Google Scholar 

  • Grunwald D, Kaiser M, Junker S, Marhan S, Piepho HP, Poll C, Ludwig B (2017) Influence of elevated soil temperature and biochar application on organic matter associated with aggregate-size and density fractions in an arable soil. Agric Ecosyst Environ 241:79–87

    Article  CAS  Google Scholar 

  • Grutzmacher P, Puga A, Silveira MP et al (2018) Carbon stability and mitigation of fertilizer induced N2O emissions in soil amended with biochar. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.12.196

    Article  Google Scholar 

  • Grycová B, Koutník I, Pryszcz A (2016) Pyrolysis process for the treatment of food waste. Bioresour Technol 218:1203–1207

    Article  CAS  Google Scholar 

  • Ha M, Bumguardner ML, Munster CL, Vietor DM, Capareda S, Palma MA, Provin T (2010) Optimizing the logistics of a mobile fast pyrolysis system for sustainable bio-crude oil production. American Society of Agricultural and Biological Engineers. Annual international meeting. Pittsburgh, Pennsylvania, USA

  • Hall K, Gámiz B, Cox L, Spokas K, Koskinen W (2017) Understanding mechanisms to predict and optimize biochar for agrochemical sorption. In: EGU general assembly conference abstracts, vol 19, p 10190

  • Harel YM, Elad Y, David DR, Borenstein M, Shulchani R, Lew B, Graber ER (2012) Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357:245–257

    Article  CAS  Google Scholar 

  • Hašková S (2017) Holistic assessment and ethical disputation on a new trend in solid biofuels. Sci Eng Ethics 23:509–519

    Article  Google Scholar 

  • Headlee WL, Brewer CE, Hall RB (2014) Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Res 7:120–131

    Article  CAS  Google Scholar 

  • Jeffery S, Abalos D, Spokas KA, Verheijen FG (2015) Biochar effects on crop yield. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Routlege, London

    Google Scholar 

  • Jin J, Li Y, Zhang J, Wu S, Cao Y, Liang P, Christie P (2016) Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J Hazard Mater 320:417–426

    Article  CAS  Google Scholar 

  • Kabir G, Hameed BH (2017) Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew Sustain Energy Rev 70:945–967

    Article  CAS  Google Scholar 

  • Kolář L, Kužel S, Peterka J, Borová-Batt J (2010) Agrochemical value of the liquid phase of wastes from fermenters during biogas production. Plant Soil Environ 56:23–27

    Article  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge, London

    Book  Google Scholar 

  • Liu H, Zhang Q, Hu H, Liu P, Hu X, Li A, Yao H (2015) Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis. Proc Combust Inst 35:2759–2766

    Article  CAS  Google Scholar 

  • López-Cano I, Roig A, Cayuela ML, Alburquerque JA, Sánchez-Monedero MA (2016) Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Manage 49:553–559

    Article  CAS  Google Scholar 

  • Lu SG, Sun FF, Zong YT (2014) Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). CATENA 114:37–44

    Article  Google Scholar 

  • Lu HP, Li ZA, Gascó G, Méndez A, Shen Y, Paz-Ferreiro J (2018) Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ 622:892–899

    Article  CAS  Google Scholar 

  • María De la Rosa J, Espejo De Miguel M, Knicker H, Fernández Boy E (2018) Testing established method for the determination of the cation exchange capacity in soils for the characterization of Biochars. In: EGU general assembly conference abstracts, vol 20, p 5071

  • Maroušek J (2014) Significant breakthrough in biochar cost reduction. Clean Technol Environ 16:1821–1825

    Article  CAS  Google Scholar 

  • Maroušek J, Myšková K, Žák J (2015) Managing environmental innovation: case study on biorefinery concept. Rev Techn Fac Univ 38:216–220

    Google Scholar 

  • Maroušek J, Kolář L, Vochozka M, Stehel V, Maroušková A (2017) Novel method for cultivating beetroot reduces nitrate content. J Clean Prod 168:60–62

    Article  CAS  Google Scholar 

  • Maroušek J, Kolář L, Vochozka M, Stehel V, Maroušková A (2018a) Biochar reduces nitrate level in red beet. Environ Sci Pollut Res Int 25:18200–18203

    Article  CAS  Google Scholar 

  • Maroušek J, Stehel V, Vochozka M, Maroušková A, Kolář L (2018b) Postponing of the intracellular disintegration step improves efficiency of phytomass processing. J Clean Prod 199:173–176

    Article  Google Scholar 

  • Maroušek J, Stehel V, Vochozka M, Kolář L, Maroušková A, Strunecký O, Peterka J, Kopecký M, Shreedhar S (2019) Ferrous sludge from water clarification: changes in waste management practices advisable. J Clean Prod 218:459–464

    Article  CAS  Google Scholar 

  • McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agr Ecosyst Environ 129:1–7

    Article  CAS  Google Scholar 

  • Meyer S, Genesio L, Vogel I, Schmidt HP, Soja G, Someus E, Glaser B (2017) Biochar standardization and legislation harmonization. J Environ Eng Landsc 25:175–191

    Article  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202

    Article  CAS  Google Scholar 

  • Mohan D, Abhishek K, Sarswat A, Patel M, Singh P, Pittman CU (2018) Biochar production and applications in soil fertility and carbon sequestration—a sustainable solution to crop-residue burning in India. RSC Adv 8:508–520

    Article  CAS  Google Scholar 

  • Mosa A, El-Banna MF, Gao B (2016) Biochar filters reduced the toxic effects of nickel on tomato (Lycopersicon esculentum L.) grown in nutrient film technique hydroponic system. Chemosphere 149:254–262

    Article  CAS  Google Scholar 

  • Mumme J, Getz J, Prasad M, Lüder U, Kern J, Mašek O, Buss W (2018) Toxicity screening of biochar-mineral composites using germination tests. Chemosphere 207:91–100

    Article  CAS  Google Scholar 

  • Nedbalová L, Stuchlík E, Strunecký O (2006) Phytoplankton of a mountain lake (L’adové pleso, the Tatra Mountains, Slovakia): seasonal development and first indications of a response to decreased acid deposition. Biologia 61:S91–S100

    Google Scholar 

  • Novak JM, Busscher WJ, Watts DW, Laird DA, Ahmedna MA, Niandou MA (2010) Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154:281–288

    Article  CAS  Google Scholar 

  • Olarieta JR, Padrò R, Masip G, Rodríguez-Ochoa R, Tello E (2011) ‘Formiguers’, a historical system of soil fertilization (and biochar production?). Agric Ecosyst Environ 140:27–33

    Article  Google Scholar 

  • Opatokun SA, Kan T, Al Shoaibi A, Srinivasakannan C, Strezov V (2015) Characterization of food waste and its digestate as feedstock for thermochemical processing. Energy Fuels 30:1589–1597

    Article  CAS  Google Scholar 

  • Özsin G, Pütün AE (2017) Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manage 64:315–326

    Article  CAS  Google Scholar 

  • Peiris C, Gunatilake SR, Mlsna TE, Mohan D, Vithanage M (2017) Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour Technol 246:150–159

    Article  CAS  Google Scholar 

  • Qambrani NA, Rahman MM, Won S, Shim S, Ra C (2017) Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew Sustain Energy Rev 79:255–273

    Article  CAS  Google Scholar 

  • Rao MA, Simeone GDR, Scelza R, Conte P (2017) Biochar based remediation of water and soil contaminated by phenanthrene and pentachlorophenol. Chemosphere 186:193–201

    Article  CAS  Google Scholar 

  • Rehan M, Miandad R, Barakat MA, Ismail IMI, Almeelbi T, Gardy J, Nizami AS (2017) Effect of zeolite catalysts on pyrolysis liquid oil. Int Biodeterior Biodegrad 119:162–175

    Article  CAS  Google Scholar 

  • Smetanová A, Dotterweich M, Diehl D, Ulrich U, Dotterweich NF (2013) Influence of biochar and terra preta substrates on wettability and erodibility of soils. Z Geomorphol Suppl 57:111–134

    Article  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Sparks DL (ed) Advances in agronomy, vol 105. Academic Press, Amsterdam, pp 47–82

    Google Scholar 

  • Solomon D, Lehmann J (2017) Socio–economic scenarios of low hanging fruits for developing climate-smart biochar systems in Ethiopia: biomass resource availability to sustainably improve soil fertility, agricultural productivity and food and nutrition security. Federal Institute for Geosciences and Natural Resources, BGR, Hanover

    Google Scholar 

  • Subedi R, Taupe N, Ikoyi I, Bertora C, Zavattaro L, Schmalenberger A, Grignani C (2016) Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci Total Environ 550:924–933

    Article  CAS  Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147

    Article  CAS  Google Scholar 

  • Thies JE, Rillig MC, Graber ER (2015) Biochar effects on the abundance, activity and diversity of the soil biota. Biochar for environmental management: science, technology and implementation. Earthscan, London, pp 327–389

    Google Scholar 

  • Thines KR, Abdullah EC, Mubarak NM, Ruthiraan M (2017) Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renew Sustain Energy Rev 67:257–276

    Article  CAS  Google Scholar 

  • Tindall R, Apffel-Marglin F, Shearer D (2017) Sacred soil: biochar and the regeneration of the earth. North Atlantic Books, Berkeley

    Google Scholar 

  • Uchimiya M, Cantrell KB, Hunt PG, Novak JM, Chang SC (2012) Retention of heavy metals in a Typic Kandiudult amended with different manure-based biochars. J Environ Qual 41:1138–1149

    Article  CAS  Google Scholar 

  • Vochozka M, Maroušková A, Váchal J, Straková J (2016) Biochar pricing hampers biochar farming. Clean Technol Environ 18:1225–1231

    Article  Google Scholar 

  • Wei L, Wen L, Yang T, Zhang N (2015) Nitrogen transformation during sewage sludge pyrolysis. Energy Fuel 29:5088–5094

    Article  CAS  Google Scholar 

  • Werner S, Kätzl K, Wichern M, Buerkert A, Steiner C, Marschner B (2018) Agronomic benefits of biochar as a soil amendment after its use as waste water filtration medium. Environ Pollut 233:561–568

    Article  CAS  Google Scholar 

  • Wu H, Lai C, Zeng G, Liang J, Chen J, Xu J, Lu L (2017) The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit Rev Biotechnol 37:754–764

    Article  CAS  Google Scholar 

  • Zhao B, O’Connor D, Zhang J, Peng T, Shen Z, Tsang DC, Hou D (2018) Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174:977–987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Maroušek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroušek, J., Strunecký, O. & Stehel, V. Biochar farming: defining economically perspective applications. Clean Techn Environ Policy 21, 1389–1395 (2019). https://doi.org/10.1007/s10098-019-01728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-019-01728-7

Keywords

Navigation