Skip to main content
Log in

Eco-friendly process for soft drink industries wastewater reuse as growth medium for Saccharomyces cerevisiae production

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Soft drink industries suffer inadequate handling of their product losses generally considered as wastes. Those products contribute to the wastewater organic load augmentation and cause fastidious environmental impact. In this study, an industrial scale bioconversion process based on multistage fermentation was proposed to treat and reuse soft drink factories’ high-loaded effluents for valuable components production. An upstream segregation of non-consumed beverage was performed to reduce the organic load of the soft drink wastewater. Beverage characterization revealed an important sugar content. Such an organic compound is undoubtedly responsible of the high organic load of soft drink wastewater. Thus, the bioconversion of the sugar content of soft drink waste to single-cell proteins was proposed as a solution to reduce wastewater polluting load. Soft drink wastewater including rejected and returned products was tested to be used as a substrate for yeast biomass production using a commercial yeast strain of Saccharomyces cerevisiae. The effect of nutrient supplementation and the initial sugar concentration effect in culture media on the biomass production were investigated using batch and fed-batch process. Results indicated that supplementation is necessary for successful fermentation. Juices and nectars gave better sugar-biomass conversion yields (0.38–0.45 g g−1). Depletion of the sugar contained in the soft drinks exceeded 96 % for all fermented media. Fed-batch culture revealed a biomass concentration improvement reaching 9.16 g L−1 compared to batch biomass concentration resulting from batch cultures (5.2 g L−1). The proposed process was shown to enable beverage industries to reduce water pollution generation through an on-site segregation procedure and a storage system to valorize product losses as source medium for single-cell protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acourène S, Tama M (2001) Utilisation des dattes de faible valeur marchande (Rebuts de Deglet-Nour, Tinissine et Tantboucht) comme substrat pour la fabrication de la levure boulangère. Rev Energ Ren : Production et Valorisation – Biomasse, pp 1–10. http://www.cder.dz/download/bio_1.pdf

  • Acourène S, Khalid AK, Bacha A, Tama M, Taleb B (2007) Optimization of bakery yeast production cultivated on musts of dates. J Appl Sci Res 3:964–971

    Google Scholar 

  • Al-Eid SM, Al-Jasass FM, Hamad SH (2010) Performance of baker’s yeast produced using date syrup substrate on Arabic bread quality. Afr J Biotechnol 9:3167–3174

    Google Scholar 

  • Al-Obaidi ZS, Aziz GM, Al-Hakkak TS, Al-Hilli MA (1987) Optimization of propagation medium for baker’s yeast using date extract and molasses. Determination of the optimum concentration of microelements and vitamins. Date Palm J 5:64–78

    CAS  Google Scholar 

  • APII (2014) Les Industries Agroalimentaires en Tunisie: Industrie des Boissons. Agency for the Promotion of Industry and Innovation, Tunisia

    Google Scholar 

  • APII (2015) Breakdown of enterprises employing 10 or more persons by activity and regime, Food sector. Agency for the promotion of industry and innovation. Tunisia Industry Portal. http://www.tunisieindustrie.nat.tn/fr/zoom.asp?action=list&idsect=05. Accessed 15 June 2015

  • Audigié CI, Figarelle J, Zonszain F (1984) Manipulations d’Analyses biochimiques. Doin, Paris

    Google Scholar 

  • Bessah R, Touzi A (2001) Production de Protéines d’Organismes Unicellulaires à partir des Déchets de Dattes Rev Energ Ren, pp 37–40

  • Blanco CA, Rayo J, Giralda JM (2008) Improving industrial full-scale production of baker’s yeast by optimizing aeration control. J AOAC Int 91:607–613

    CAS  Google Scholar 

  • Carmaux S (2008) Caractérisation de la mort des cellules animales cultivées en bioréacteur. Henri Poincaré-Nancy I, Nancy

    Google Scholar 

  • Cherni A, Ben Zid M (2007) Evaluation des non conformités au cours du conditionnement des boissons Gazeuses. Higher Institute of Food Industries of Tunisia, Tunis

    Google Scholar 

  • da Cunha-Pereira F, Hickert LR, Sehnem NT, de Souza-Cruz PB, Rosa CA, Ayub MAZ (2011) Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations. Bioresour Technol 102:4218–4225. doi:10.1016/j.biortech.2010.12.060

    Article  Google Scholar 

  • Eibl R, Eibl D (2009) Disposable bioreactors in cell culture-based upstream processing. BioProcess Int 7:18–23

    CAS  Google Scholar 

  • Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011) Effects of feedstocks on the process integration of biohydrogen production. Clean Technol Environ Policy 13:547–558. doi:10.1007/s10098-011-0351-7

    Article  CAS  Google Scholar 

  • Ghoulem C (2012) Amélioration du traitement des rejets industriels de la Société Tunisienne des Boissons Gazeuses (STBG) par nanofiltration membranaire et Suivi du phénomène d’entartrage. Université de Jendouba

  • Gómez-Pastor R, Garre E, Matallana E, Pérez-Torrado R (2011) Recent advances in yeast biomass production. In: Matovic DD (ed) Biomass—detection, production and usage. In Tech, pp. 201–222. doi:10.5772/19458

  • Isla MA, Comelli RN, Seluy LG (2013) Wastewater from the soft drinks industry as a source for bioethanol production. Bioresour Technol 136:140–147. doi:10.1016/j.biortech.2013.02.089

    Article  CAS  Google Scholar 

  • Johnson G (1999) Assessing the damage to coke after health scare. Public Opinion, Los Angeles Times. http://articles.latimes.com/1999/jun/30/business/fi-51506. Accessed 25 March 2015

  • Kasmi M, Snoussi M, Dahmeni A, Ben Amor M, Hamdi M, Trabelsi I (2015) Use of thermal coagulation, separation, and fermentation processes for dairy wastewater treatment. Des Water Treat. doi:10.1080/19443994.2015.1056835

    Google Scholar 

  • Khan JA, Abulnaja KO, Kumosani TA, Abou-Zaid A-ZA (1995) Utilization of Saudi date sugars in production of baker’s yeast. Bioresour Technol 53:63–66. doi:10.1016/0960-8524(95)00061-I

    Article  CAS  Google Scholar 

  • Madanhire I, Mbohwa C (2014) Cleaner production framework for an beverage manufacturing company. In: Industrial and Manufacturing Engineering, vol 11. World Academy of Science, Engineering and Technology, Johannesburg

  • Markowski M, Urbaniec K, Budek A, Wukovits W, Friedl A, Ljunggren M, Zacchi G (2009) Heat integration of a fermentation-based hydrogen plant connected with sugar factory. Chem Eng 18:351–356. doi:10.3303/CET0918056

    Google Scholar 

  • Martínez-Guido SI, González-Campos JB, Ponce-Ortega JM, Nápoles-Rivera F, El-Halwagi MM (2016) Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technol Environ Policy 18:553–562. doi:10.1007/s10098-015-1039-1

    Article  Google Scholar 

  • Maxime D, Marcotte M, Arcand Y (2006) Development of eco-efficiency indicators for the Canadian food and beverage industry. J Clean Prod 14:636–648. doi:10.1016/j.jclepro.2005.07.015

    Article  Google Scholar 

  • MedTEST (2012) Beverage Industry, Case Study FOOD sector—Tunisia. MedPartnership, Italy

  • Midžić-Kurtagić S, Silajdžić I, Kupusović T (2010) Mapping of environmental and technological performance of food and beverage sector in Bosnia and Herzegovina. J Clean Prod 18:1535–1544. doi:10.1016/j.jclepro.2010.06.014

    Article  Google Scholar 

  • Mukherjee K, Banik AK (2010) Effect of trace elements on biosorption of Hg2+ by Hg2+ tolerant Saccharomyces cerevisiae A100. Int J Pharma Bio Sci 2:236–241

    Google Scholar 

  • Mwesigye PK, Barford JP (1996) Batch growth and transport kinetics of utilization of mixtures of sucrose and maltose by Saccharomyces cerevisiae. J Ferment Bioeng 82:101–108. doi:10.1016/0922-338X(96)85029-X

    Article  CAS  Google Scholar 

  • Olajire AA (2012) The brewing industry and environmental challenges. J Clean Prod. doi:10.1016/j.jclepro.2012.03.003

    Google Scholar 

  • Ould El Hadj MD, Bitour Z, Siboukeur O (2006) Etude de la production de la levure boulangère (Saccharomyces cerevisiae) cultivée sur moût de rebuts des dattes. Courrier du Savoir 7:13–18

    Google Scholar 

  • Oura E (1974) Effect of aeration intensity on the biochemical composition of baker’s yeast. I. Factors affecting the type of metabolism. Biotechnol Bioeng 16:1197–1212. doi:10.1002/bit.260160905

    Article  CAS  Google Scholar 

  • Peixoto G, Saavedra NK, Varesche MBA, Zaiat M (2011) Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. Int J Hydrog Energy 36:8953–8966. doi:10.1016/j.ijhydene.2011.05.014

    Article  CAS  Google Scholar 

  • Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E (2009) Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol 81:951–960

    Article  Google Scholar 

  • Rahim R, Raman AAA (2015) Cleaner production implementation in a fruit juice production plant. J Clean Prod 101:215–221. doi:10.1016/j.jclepro.2015.03.065

    Article  CAS  Google Scholar 

  • Reed G, Nagodawithana TW (eds) (1991) Baker’s yeast production. In: Yeast technology, 2nd edn. Van Nostrand-Reinhold, New York, pp 261–314

    Chapter  Google Scholar 

  • Reed G, Peppler HJ (1973) Yeast technology. AVI Pubishing Co., Westport, MI

    Google Scholar 

  • Reineccius G (2005) Flavor chemistry and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II Mathematical model. Biotechnol Bioeng 55:592–608

    Article  CAS  Google Scholar 

  • Rodier J, Legube B, Merlet N, Brunet R (2009) L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer, 9th edn. Dunod, Paris

    Google Scholar 

  • Schollenberger H, Treitz M, Geldermann J (2008) Adapting the European approach of Best Available Techniques: case studies from Chile and China. J Clean Prod 16:1856–1864. doi:10.1016/j.jclepro.2008.02.007

    Article  Google Scholar 

  • Seiler RL, Zaugg SD, Thomas JM, Howcroft DL (1999) Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Ground Water 37:405–410. doi:10.1111/j.1745-6584.1999.tb01118.x

    Article  CAS  Google Scholar 

  • Singh Pankaj SR (1999) Biological production of clean energy: hydrogen. In: Tiwari SP, Sharma R, Gaur R (eds) Recent advances in biotechnology. Pratiyogita Darpan, India, pp 384–387

    Google Scholar 

  • Spigno G, Fumi MD, De Faveri DM (2002) Glucose syrup and corn steep liquor as alternative to molasses substrates for production of baking-quality yeast. Institute of Oenology and Food Engineering—Università Cattolica del Sacro Cuore Via Emilia Parmense Piacenza (Italy)

  • STBG (2011) Société Tunisienne des Boissons Gazeuses: Satistical Data. Tunis

  • Stone CW (1998) Yeast products in the feed industry: A Practical Guide for Feed Professionals. Diamond V Mills Inc., Cedar Rapids, pp 10–11

    Google Scholar 

  • Sychrova H (2004) Yeast as a model organism to study transport and homeostasis of alkali metal cations. Physiol Res/Acad Sci Bohemoslov 53:91–98

    Google Scholar 

  • Times Wire Services (1999) Health Scare Will Hurt Coca-Cola’s Results

  • Touzi A (1997) Production d’Ethanol à partir des déchets de Dattes. Recherche Agronomique 1:53–57

    Google Scholar 

  • Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresour Technol 101:5290–5296. doi:10.1016/j.biortech.2010.01.146

    Article  CAS  Google Scholar 

  • Urbaniec K, Grabarczyk R (2014) Hydrogen production from sugar beet molasses—a techno-economic study. J Clean Prod 65:324–329. doi:10.1016/j.jclepro.2013.08.027

    Article  CAS  Google Scholar 

  • Zimkus A, Chaustova L, Raszumas V (2006) Effect of Lithium and Sodium cations on the permeability of yeast Saccharomyces cerevisiae cells to tetraphenylphosphonium ions. Biologija 2:47–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Kasmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasmi, M., Chatti, A., Hamdi, M. et al. Eco-friendly process for soft drink industries wastewater reuse as growth medium for Saccharomyces cerevisiae production. Clean Techn Environ Policy 18, 2265–2278 (2016). https://doi.org/10.1007/s10098-016-1144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1144-9

Keywords

Navigation