Skip to main content

Advertisement

Log in

Biogas treatment by ashes from incineration processes

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

This paper presents the characterization of ashes generated from different incineration processes, such as (a) coupled kilns, (b) conventional kiln, (c) wood, and (d) fly and bottom of Petacalco power plant, in order to set which is the best one for the purification of biogas from landfill. The techniques employed for the characterization were scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The ashes from these sources were analysed through their microstructural properties and features such as the efficiency of carbon dioxide reduction due to chemical reaction with the calcium oxide present in the ashes. Calcium carbonate mineral was obtained as a highly stable and insoluble salt. The results indicate that the ash from wood is the most appropriate to reduce the carbon dioxide due to its high calcium content. Dry fly ash from Petacalco power plant has the ability to carry out a process of carbonation according to the samples analyzed. It was noted that elements such as aluminium, sodium, potassium, and magnesium led to the formation of some other mineral species in the ash resulting from incineration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguilar Q, Taboada PA, Ojeda S (2010) Determining parameters for estimating L0 ky biogas landfill. 3rd Iberoamerican Symposium Waste Engineering, 2° Seminário da Região Nordeste sobre Resíduos Sólidos. Os resíduos sólidos no contexsto das mundaças climáticas, Claudia CoutinhoNóbrega (eds), 1–8, Editora universitária/UFPB, João Pessoa, Paraiba, Brasil

  • Aguilar-Virgen Q, Armijo-de Vega C, Taboada-González P (2009) The energy potential of municipal solid waste. Ingeniería–Revista Académica FIUADY 13(1):59–62

  • Anand S, Gupta A, Tyagi SK (2014) Critical analysis of a biogas powered absorption system for climate change mitigation. Clean Technol Environ Policy 16(3):569–578

    Article  CAS  Google Scholar 

  • Baciocchi R, Corti A, Costa G, Lombardi L, Zingaretti D (2011) Storage of carbon dioxide captured in a pilot-scale biogas upgrading plant by accelerated carbonation of industrial residues. Energy Proc 4:4985–4992

    Article  CAS  Google Scholar 

  • Batool SA, Chuadhry MN (2008) The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan. Waste Manag 29(1):63–69

    Article  Google Scholar 

  • Cebula J (2009) Biogas purification by sorption techniques. Archit Civ Eng Environ Silesian Univ Technol 2:95–104

    Google Scholar 

  • CFE (2007) POISE20072016. www.cfe.gob.mx/ConoceCFE/1_AcercadeCFE/Lists/POISE%20documentos/Attachments/6/jun.pdf, Accessed 23 Dec 2014

  • Chavez RH (2008) Pollution reduction and energy savings of a coupled two-kiln system for bricks making. Environ Prog 27(3):397–404

    Article  CAS  Google Scholar 

  • Chavez RH, Guadarrama JJ (2014) Ashes characterization for biogas cleaning from landfill. Chem Eng Trans 39:481–486. doi:10.3303/CET1439081

    Google Scholar 

  • EPA (1996) Turning a Liability into an Asset: A Landfill Gas-to-Energy Project Development Handbook. Environmental Protection Agency, United States of America. Biogas www.epa.gov/lmop/documents/xls/ModeloMexicanodeBiogasv2.xls, Accessed 16 April 2008. Biogas www.epa.gov/landfill/res/pdf/handbook.pdf, Accessed 16 April 2008. Biogas www.energizar.org.ar/energizar_desarrollo_tecnologico_biogas.html, Accessed 15 Oct 2014

  • Favre E, Bounaceur R, Roizard D (2009) Biogas, membranes and carbon dioxide. J Membr Sci 328:11–14

    Article  CAS  Google Scholar 

  • Fernandez M, Li X, Simons SJR, Hills CD, Carey PJ (2004) Investigation of accelerated carbonation for the stabilization of MSW incinerator ashes and the sequestration of CO2. Green Chem 6:428–436

    Article  Google Scholar 

  • Fujino J, Morita A, Matsuoka Y, Sawayama S (2005) Vision for utilization of livestock and residue as bioenergy resource in Japan. Biomass Bioenergy 29:367–374

    Article  Google Scholar 

  • Gelegenisa J, Georgakakis JD, Angelidakic I, Mavrisa V (2007) Optimization of biogas production by codigesting whey with diluted poultry manure. Renew Energy 32:2160–2174

    Google Scholar 

  • Houshfar E, Wang L, Vâhâ-Savo N (2014) Characterisation of CO/NO/SO2 emission and ash-forming elements from the combustion and pyrolysis process. Clean Technol Environ Policy 16(7):1339–1351

    Article  CAS  Google Scholar 

  • Ito R, Fujita T, Sadaki J, Matsumoto Y, Ahn JW (2006) Removal of chloride in bottom ash from the industrial and municipal solid waste incinerators. Int J Soc Mater Eng Resour 13(2):70–74

    Article  CAS  Google Scholar 

  • Kostevsek A, Cizelj L, Petek J, Cucek L, Varbanov PS, Klemes JJ, Pivec A (2013) Use of renewable in rural municipalities’ integrated energy systems. Chem Eng Trans 35:895–900. doi:10.3303/CET1335149

    Google Scholar 

  • Kotecha P, Diwekar U (2013) Model-based approach to study the impact of biofuels on the sustainability of an ecological system. Clean Technol Environ Policy 15(1):21–33

    Article  CAS  Google Scholar 

  • Kropac J, Ferdan T, Pavlas M (2013) Waste to energy modelling—energy efficiency versus minimized environmental impact. Chem Eng Trans 35:901–906. doi:10.3303/CET1335150

    Google Scholar 

  • Lin WY, Wang JY (2012) Investigation on accelerated carbon of MSW incineration bottom ash for application of biogas purification. 3rd International Conference on Industrial and Hazardous Waste Management, 12–14 September 2012, Chania, Greece

  • Margallo M, Aldaco R, Irabien A (2014) Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Technol Environ Policy 16(7):1319–1328

    Article  CAS  Google Scholar 

  • Mostbauer P, Olivieri T, Lombardi L, Paradisi A (2012) Pilot-scale upgrading of landfill gas and sequestration of CO2 by MSWI bottom ash. ASH 2012. Stockholm, Sweden, pp 25–27

    Google Scholar 

  • Niesner J, Jecha D, Stehlik P (2013) Biogas upgrading technologies: State of art review in European region. Chem Eng Trans 35:517–522. doi:10.3303/CET1335086

    Google Scholar 

  • Persson M, Wellinger A (2007) Report on technological applicability of existing biogas upgrading processes. Part I. www.biogasmax.eu/media/report_on_technological_2007__041639600_1025_22052007.pdf, Accessed Dec 06 2012

  • Rashidi NA, Yusup S (2014) Experimental and modeling studies of carbon dioxide adsorption by porous biomass derived activated carbon. Clean Technol Environ Policy 16(7):1335–1361

    Article  Google Scholar 

  • Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  CAS  Google Scholar 

  • Raven RPJM, Gregersen KH (2007) Biogas plants in Denmark: success and setbacks. Renew Sustain Energy Rev Elsevier 11(1):116–132

    Article  Google Scholar 

  • Rendek E, Ducom G, Germain P (2006) Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J Hazard Mater B128:73–79

    Article  Google Scholar 

  • Ryckebosch E, Drouillon M, Ververen H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  CAS  Google Scholar 

  • Savery WC, Cruzon DC (1972) Methane recovery from chicken manure. J Water Pollut Control Fed 44(12):2349–2354

    Google Scholar 

  • Schiavon MDC, Cardozo F, Frare L, Gimenes M, Pereira N (2014) Purification of biogas for energy use. Chem Eng Trans 37:643–648. doi:10.3303/CET1437108

    Google Scholar 

  • SEMARNAT (2002) NOM-098 Mexican Official Standard establishes environmental protection waste incineration operations specifications and pollutant emission limits. Mexico City, Mexico

    Google Scholar 

  • SEMARNAT (2005) NOM-052 Mexican Official Standard establishes the characteristics, the process of identification, classification and listing of hazardous waste. Mexico City, Mexico

    Google Scholar 

  • SENER (2012) Biogas. www.renovables.gob.mx/portal/Default.aspx?id=2195&lang=2, Accessed Sep 10 2012

  • Sivula L (2012) Characterization and treatment of waste incineration bottom ash and leachate. Jyväskylä University Printing House, Jyväskylä Studies in Biological and Environmental Science, Jyväskylä

    Google Scholar 

  • Starr K, Gabarrell X, Villalba G, Talens L, Lombardi L (2012) Life cycle assessment for biogas upgrading technologies. Waste Manag 32:991–999

    Article  CAS  Google Scholar 

  • Wdowin M, Franus M (2014) The conversion technology of fly ash into zeolites. Clean Technol Environ Policy 16(8):1551–1564

    Article  Google Scholar 

  • Weber B, Rojas Oropeza M, Torres Bernal M, Pampillo Gonzalez L (2012) Producción de biogás en México. Red Mexicana de bioingeniería, AC, Mexico City

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial funding provided to this work by the National Council for Science and Technology (CONACyT), under Projects: EDOMEX-2009-C02-135728 and SEP-CONACyT-CB-2007-01-82987, and the help by the staff of the Laboratory of Materials, Management of Applied Sciences, Nuclear Research of National Institute. The authors also acknowledge the data from power plants provided by Eng. Jose Manuel Muñoz Villalobos, advisor Branch Generation, CFE, and thank the Superintendent of Petacalco power plant Eng. Ignacio Carrizales for supplying dry fly and bottom ashes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-Hilda Chavez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavez, RH., Guadarrama, J.J. Biogas treatment by ashes from incineration processes. Clean Techn Environ Policy 17, 1291–1300 (2015). https://doi.org/10.1007/s10098-015-0980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-0980-3

Keywords

Navigation