Skip to main content

Advertisement

Log in

Predictive factors, outcomes, and molecular epidemiology of Clostridioides difficile diarrhea in Brazilian hospitals

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Little is known about the role of lineage of strains of Clostridioides difficile (CD) on the clinical presentation of CD infection (CDI) in Latin America, especially regarding the treatment response. We conducted a multicenter, prospective study to investigate the predictive factors and treatment outcomes of CDI in hospitalized patients and to performed phenotypical and molecular characterization of CD strains. A total of 361 diarrheic patients at 5 hospitals from different regions of the country were enrolled. All stool samples were tested for glutamate dehydrogenase (GDH), toxins A and B, and toxin genes using a nucleic acid amplification test (NAAT). Specimens were cultured and susceptibility profile and whole-genome sequencing (WGS) were performed. CDI positivity was 15% (56/377). Predictive factors for CDI were prior use of meropenem (OR 4.09, 95% CI 2.097–7.095; p<0.001), mucus in stools (OR 3.29; 95% CI 1.406–7.722; p=0.006) and neutrophil left-shift with >20% of bands (OR 3.77; 95% IC 1.280–11.120; p=0.016). Overall mortality was 19%, with no deaths attributed to CDI. Oral metronidazole was used in 74% of cases, with 85% of cure and 14% of recurrence. A total of 35 CD isolates were recovered, all of them susceptible to metronidazole and vancomycin. The WGS revealed 17 different STs, six of which were novel. ST42 was the most common ST and hypervirulent strains were not found. Severe CDI were caused by ST42, ST5, ST8, ST48, ST33 and a novel ST667. The ermB gene was more frequently found in isolates of ST42 (p=0.004).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the corresponding author.

References

  1. Surawicz CM, Brandt LJ, Binion DG et al (2013) Guidelines for diagnostics, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498

    Article  CAS  Google Scholar 

  2. Loo VG, Bourgault AM, Poirier L et al (2011) Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 365(18):1693–1703

    Article  CAS  Google Scholar 

  3. Lessa FC, Winston LG, McDonald LC (2015) Emerging Infections Program C. difficile Surveillance Team. Burden of Clostridium difficile infection in the United States. N Engl J Med 372(24):2369–2370

    PubMed  Google Scholar 

  4. Nagy E (2018) What do we know about the diagnostics, treatment and epidemiology of Clostridioides (Clostridium) difficile infection in Europe? J Infect Chemother 24:164–170

    Article  Google Scholar 

  5. McDonald LC, Gerding DN, Johnson S et al (2018) Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66(7):e1–e48

    Article  CAS  Google Scholar 

  6. Crobach MJT, Planche T, Eckert C et al (2016) European Society of Clinical Microbiology and Infectious Diseases: update of diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 22(Suppl 4):S63–S81

    Article  Google Scholar 

  7. Knetsch CW, Lawley TD, Hensgens MP et al (2013) Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro Surveill 18(4):20381

    Article  CAS  Google Scholar 

  8. Salazar CL, Reyes C, Atehortua S et al (2017) Molecular, microbiological and clinical characterization of Clostridium difficile isolates from tertiary care hospitals in Colombia. PLoS One 12(9):e0184689

    Article  Google Scholar 

  9. Jiménez A, Araya R, Paniagua D, Camacho-Mora Z et al (2018) Molecular epidemiology and antimicrobial resistance of Clostridium difficile in a National Geriatrics Hospital from Costa Rica. J Hosp Infect 99(4):475–480

    Article  Google Scholar 

  10. Guerrero-Araya E, Meneses C, Castro-Nallar E, Guzmán AM et al (2020) Origin, genomic diversity and microevolution of the Clostridium difficile B1/NAP1/RT027/ST01 strain in Costa Rica, Chile, Honduras and Mexico. Microb Genom 6(5):e000355

    PubMed Central  Google Scholar 

  11. Pires RN, Monteiro AA, Saldanha GZ et al (2018) Hypervirulent Clostridium difficile strain has arrived in brazil. Infect Control Hosp Epidemiol 39(3):371–373

    Article  Google Scholar 

  12. Trindade CRN, Domingues Regina Maria CP, Ferreira EO (2019) The epidemiology of Clostridioides difficile infection in Brazil: a systematic review covering thirty years. Anaerobe 58:13–21

    Article  CAS  Google Scholar 

  13. Igarashi Y, Tashiro S, Enoki Y et al (2018) Oral vancomycin versus metronidazole for the treatment of Clostridioides difficile infection: meta-analysis of randomized controlled trials. J Infect Chemother 24(11):907–914. https://doi.org/10.1016/j.jiac.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  14. Sarna K, Gross A (2019) vancomycin versus metronidazole for nonsevere Clostridioides difficile infection: are the data adequate to change practice? Ann Pharmacother 53(8):845–852. https://doi.org/10.1177/1060028019829764

    Article  CAS  PubMed  Google Scholar 

  15. Fabre VR, Dzintars K, Avdic E, Cosgrove SE (2018) Role of metronidazole in mild Clostridium difficile infections. Clin Infect Dis 67:1956–1958. https://doi.org/10.1093/cid/ciy474

    Article  PubMed  Google Scholar 

  16. Lungulescu OA, Cao W, Gatskevich E et al (2011) CSI: a severity index for Clostridium difficile infection at the time of admission. J Hosp Infect 79:151–154

    Article  CAS  Google Scholar 

  17. European Centre for Disease Prevention and Control (2015) European surveillance of Clostridium difficile infections. Surveillance protocol version 2.2. ECDC, Stockholm. https://doi.org/10.2900/44795

    Book  Google Scholar 

  18. Fraga EG, Nicodemo AC, Sampaio JLM (2016) Antimicrobial susceptibility of Brazilian Clostridium difficile strains determined by agar dilution and disk diffusion. Braz J Infect Dis 20(5):476–481

    Article  Google Scholar 

  19. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2018) Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1. http://www.eucast.org

  20. CLSI (2018) Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA

  21. Jolley KA, Bray JE, Maiden MCJ (2018) Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. https://doi.org/10.12688/wellcomeopenres.14826.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pires RN, Falci DR, Monteiro AA et al (2019) High frequency of Clostridium difficile infections in Brazil: Results from a multicenter point-prevalence study. Infect Control Hosp Epidemiol 40(4):484–485. https://doi.org/10.1017/ice.2019.27

    Article  PubMed  Google Scholar 

  23. Eze P, Balsells E, Kyaw MH, Nair H (2017) Risk factors for Clostridium difficile infections an overview of the evidence base and challenges in data synthesis. J Glob Health 7(1):010417

    Article  Google Scholar 

  24. Leffler DA, Lamont JT (2015) Clostridium difficile infections. N Engl J Med 373:287–288

    CAS  PubMed  Google Scholar 

  25. Slimings C, Riley TV (2014) Antibiotis and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 69:881–891

    Article  CAS  Google Scholar 

  26. Cançado LGG, Silva SRO, Rupnik M et al (2018) Clinical epidemiology of Clostridium difficile infection among hospitalized patients with antibiotic associated diarrhea in a university hospital of Brazil. Anaerobe 54:65–71

    Article  Google Scholar 

  27. Matos Porto AP, Goossens H, Versporten A, Costa SF, on behalf of Brazilian Global-PPS working group (2019) Global point prevalence survey (Global-PPS) of antimicrobial consumption in Brazilian hospitals. J Hosp Infect 104:165–171. https://doi.org/10.1016/j.jhin.2019.10.016

    Article  Google Scholar 

  28. BRASIL (2017) ANVISA. Boletim de Segurança do Paciente e Qualidade em Serviços de Saúde n 17: Avaliação dos indicadores nacionais das Infecções Relacionadas à Assistência à Saúde (IRAS) e Resistência microbiana do ano de 2017. https://www20.anvisa.gov.br/segurancadopaciente/index.php/publicacoes/item/boletim-seguranca-do-paciente-e-qualidade-em-servicos-de-saude ( acessed 18 december 2020)

  29. Arriola V, Tischendorf J, Musuuza J et al (2016) Assessing the risk of hospital-acquired Clostridium Difficile infection with proton pump inhibitor use: a meta-analysis. Infect Control Hosp Epidemiol 37:1408–1417

    Article  Google Scholar 

  30. Goldenberg JZ, Yap C, Lytvyn L, Lo CKF et al (2017) Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev (12):CD006095. https://doi.org/10.1002/14651858.CD006095

  31. Hickson M (2011) Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Ther Adv Gastroenterol 4(3):185197. https://doi.org/10.1177/1756283X11399115

    Article  Google Scholar 

  32. Bella SD, Friedrich AW, García-Almodóvar E et al (2015) Clostridium difficile infection among hospitalized HIV-infected individuals: epidemiology and risk factors: results from a case-control study (2002–2013). BMC Infect Dis 15:194

    Article  Google Scholar 

  33. Le F, Arora V, Shah DN et al (2012) A real-world evaluation of oral vancomycin for severe Clostridium difficile infection: implications for antibiotic stewardship programs. Pharmacotherapy 32(2):129–134. https://doi.org/10.1002/PHAR.1002

    Article  CAS  PubMed  Google Scholar 

  34. Khanafer N, Blais L, Barbut F et al (2015) Treatment of Clostridium difficile infection in a French university hospital. Scand J Gastroenterol 50(10):1253–1260. https://doi.org/10.3109/00365521.2015.1033746

    Article  CAS  PubMed  Google Scholar 

  35. Debast SB, Bauer MP, Kuijper EJ (2014) European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile Infection. Clin Microbiol Infect 20(Suppl. 2):1–26

    Article  CAS  Google Scholar 

  36. Stevens VW, Nelson RE, Schwab-Daugherty EM et al (2017) Comparative effectiveness of vancomycin and metronidazole for the prevention of recurrence and death in patients with Clostridium difficile infection. JAMA Intern Med 177(4):546–553

    Article  Google Scholar 

  37. Sholeh M, Krutova M, Forouzesh M et al (2020) Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis. Antimicrob Resist Infect Control 9(1):158. https://doi.org/10.1186/s13756-020-00815-5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dingle KE, Didelot X, Quan TP et al (2017) Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis 17(4):411–421

    Article  CAS  Google Scholar 

  39. Baine SD, Wilcox MH (2015) Antimicrobial resistance and reduced susceptibility in Clostridium difficile: potential consequences for induction, treatment, and recurrence of C. difficile infection. Antibiotics 4:267–298. https://doi.org/10.3390/antibiotics4030267

    Article  Google Scholar 

  40. Erikstrup LT, Danielsen TKL, Hall V, Olsen KEP, Kristensen B, Kahlmeter G, Fuursted K (2012) Antimicrobial susceptibility testing of Clostridium difficile using EUCAST epidemiological cut-off values and disk diffusion correlates. Clin Microbiol Infect 18(8):E266–E272

  41. Diniz AN, de Oliveira Júnior CA, Vilela EG et al (2019) Molecular epidemiology of Clostridioides (previously Clostridium) difficile isolates from a university hospital in Minas Gerais, Brazil. Anaerobe 56:34–39

    Article  CAS  Google Scholar 

  42. Salazar CL, Reyes C, Cienfuegos-Gallet AV et al (2018) A. Subtyping of Clostridium difficile PCR ribotypes 591, 106 and 002, the dominant strain types circulating in Medellin, Colombia. PLoS One 13(4):e0195694

    Article  Google Scholar 

  43. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH, EUCLID study group Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalized patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill 21(29)

  44. Yin C, Chen DS, Zhuge J, McKenna D, Sagurton J et al (2018) Complete genome sequences of four toxigenic Clostridium difficile: clinical isolates from patients of the Lower Hudson Valley, New York, USA. Genome Announc 6(4):e01537–e01517

    Article  Google Scholar 

  45. Cheng JW, Liu C, Kudinha T, Xiao M et al (2020) The tcdA negative and tcdB positive Clostridium difficile ST81 clone exhibits high-level fluoroquinolone resistance: a multicentre study in Beijing, China. Int J Antimicrob Agents:105981. https://doi.org/10.1016/j.ijantimicag.2020.105981 Online ahead of print

  46. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH et al (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73

    Article  Google Scholar 

  47. Chen YB, Gu SL, Shen P et al (2018) Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J Med Microbiol 67(1):52–59

    Article  CAS  Google Scholar 

  48. Costa CL, López-Ureña D, de Oliveira AT et al (2016) A MLST Clade 2 Clostridium difficile strain with a variant TcdB induces severe inflammatory and oxidative response associated with mucosal disruption. Anaerobe 40:76–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to bioMérieux, for the donation of chromogenic culture medium, ChromID C. difficile agar® and Pfizer that supported this work.

Funding

Pfizer (grant 53233563) supported this work, as independent researcher.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by: Evelyne Santana Girão, Silvia Figueiredo Costa, Bruno de Melo Tavares, Sania Alves dos Santos, Gessica Lorena Gamarra, Camila Rizek, Roberta Cristina Martins, Lauro Vieira Perdigão Neto, Constancia Diogo, Tatiana D’ Annibale Orsi, Hugo Manuel Paz Morales, Keite da Silva Nogueira, Adriane Ceshin Maestri, Icaro Boszczowski, Filipe Piastrelli, Cecilia Leite Costa, Daniely Viana Costa, Geovania Maciel, Janete Romão. The first draft of the manuscript was written by: Evelyne Santana Girão. The final review was done by Silvia Figueiredo Costa. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Evelyne Santana Girão.

Ethics declarations

Competing interests

All authors declare no competing interests.

Ethical approval

This protocol was approved by the ethical committee from all participating institutions: Hospital Universitário Walter Cantídio, from Federal University of Ceará, in Fortaleza, Ceara (N°2.217.633); Hospital São José de Doenças Infecciosas, in Fortaleza, Ceará (N°2.144.350); Hospital das Clínicas, from University of São Paulo, in São Paulo, São Paulo (N°2.025.392) and Hospital Alemão Oswaldo Cruz, in São Paulo, São Paulo (N°2.025.392); and Hospital das Clínicas, from Federal University of Paraná, in Curitiba, Paraná (N°2.480.851)

Consent to participate

All subjects that participated of this study gave a written informed consent in accordance with the Declaration of Helsinki.

Consent to publish

All authors consented to publish this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girão, E.S., de Melo Tavares, B., dos Santos, S.A. et al. Predictive factors, outcomes, and molecular epidemiology of Clostridioides difficile diarrhea in Brazilian hospitals. Eur J Clin Microbiol Infect Dis 40, 1821–1832 (2021). https://doi.org/10.1007/s10096-021-04189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04189-3

Keywords

Navigation