Skip to main content

Advertisement

Log in

Mechanism of Candida pathogenesis: revisiting the vital drivers

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD et al (2009) EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329

    CAS  PubMed  Google Scholar 

  2. Ingham CJ, Boonstra S, Levels S, de Lange M, Meis JF, Schneeberger PM (2012) Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminium oxide. PLoS ONE 7:e33818

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Correia A, Sampaio P, Vilanova M, Pais C (2015) Candida albicans: clinical relevance, pathogenesis, and host immunity. In: Sing SK (ed) Human emerging and re-emerging infections: viral and parasitic infections, vol 1. John Wiley and Sons, New Jersey, pp 926–952

    Google Scholar 

  4. Limon JJ, Skalski JH, Underhill DM (2017) Commensal fungi in health and disease. Cell Host Microbes 22:156–165

    CAS  Google Scholar 

  5. De Rosa FG, Garazzino S, Pasero DC, Peri GD (2009) Invasive candidiasis and candidemia: new guidelines. Minerva Anaestesiologica 75:453–458

    Google Scholar 

  6. Negri M, Faria M, Guilhermetti E, Alves A, Paula C, Svidzinski T (2010) Hemolytic activity and production of germ tubes related to pathogenic potential of clinical isolates of Candida albicans. J Basic Appl Pharm. 31:89–93

    Google Scholar 

  7. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbio 19:241–247

    CAS  Google Scholar 

  8. Wisplinghoff H, Seifert H, Tallent SM, Bischoff T, Wenzel RP, Edmond MB (2003a) Nosocomial bloodstream infections in pediatric patients in United States hospitals: epidemiology, clinical features and susceptibilities. Pediatr Infect Dis J 22:686–691

    PubMed  Google Scholar 

  9. Bongomin F, Gago S, Oladele R, Denning D (2017) Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi 3:57

    Google Scholar 

  10. Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K (2018) Candida albicans-biology, molecular characterization, pathogenicity, and advances in diagnosis and control-an update. Microb Pathog 117:128–138

    CAS  PubMed  Google Scholar 

  11. Caceres DH, Forsberg K, Welsh RM, Sexton DJ, Lockhart SR, Jackson BR et al (2019) Candida auris: a review of recommendations for detection and control in health care settings. J Fungi 5:111

    Google Scholar 

  12. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kornitzer D (2019) Regulation of Candida albicans hyphal morphogenesis by endogenous signals. J Fungi 5:21

    CAS  Google Scholar 

  14. Wisplinghoff H, Elobers J, Geurtz L, Stefanik D, Major Y, Edmond MB et al (2014) Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features and antifungal susceptibilities. Int J Antimicrob Agents 43:78–81

    CAS  PubMed  Google Scholar 

  15. Perez JC, Johnson AD (2013) Regulatory circuits that enable proliferation of the fungus Candida albicans in a mammalian host. PLoS Pathogen 9(12):e1003780

    Google Scholar 

  16. Jacobsen ID, Hube B (2017) Candida albicans morphology: still in focus. Expert Rev Anti Infect Ther 15:327–330

    CAS  PubMed  Google Scholar 

  17. Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K et al (2011) Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J BioChem 150:431–438

    CAS  PubMed  Google Scholar 

  18. Seman BG, Moore JL, Scherer AK, Blair BA, Manandhar S, Jones JM et al (2018) Yeast and filaments have specialized, independent activities in a zebrafish model of Candida albicans infection. Infect Immun 86:e00415–e00418

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Desai JV, Cheng S, Ying T, Nguyen MH, Clancy CJ, Lanni F et al (2015) Coordination of Candida albicans invasion and infection functions by phosphoglycerol phosphatase Rhr2. Pathogens 4:573–589

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kadosh D (2017) Morphogenesis in C. albicans. In: Prasad R (ed) Candida albicans: Cell Mol Biol. Springer, Cham

    Google Scholar 

  21. Han TL, Cannon RD, Villas-Boas SG (2011) The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 48:747–763

    CAS  PubMed  Google Scholar 

  22. Monge RA, Román E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912

    CAS  PubMed  Google Scholar 

  23. Gong Y, Li T, Yu C, Sun S (2017) Candida albicans heat shock proteins and Hsps-associated signaling pathways as potential antifungal targets. Front Cell Infect Microbiol 7:520

    PubMed  PubMed Central  Google Scholar 

  24. Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn JA (2004) Conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hogan D, Sundrom P (2009) The Ras/Camp/PKA signaling pathways and virulence in Candida albicans. Future Microbiol 4:1263–1270

    CAS  PubMed  Google Scholar 

  26. Lin C-J, Wu C-Y, Yu S-J, Chen Y-L (2018) Protein kinase A governs growth and virulence in Candida tropicalis. Virulence 9(1):331–347

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Inglis DO, Sherlock G (2013) Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryot Cell 12:1316–1325

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin CJ, Chen YL (2018) Conserved and divergent functions of the cAMP/PKA signaling pathway in Candida albicans and Candida tropicalis. J Fungi 4:68

    Google Scholar 

  29. Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12:365–370

    CAS  PubMed  Google Scholar 

  30. Brown A, Haynes K, Gow N, Quinn J (2012) Stress responses in Candida, 2nd edn. ASM Press, Washington, D.C., pp 225–242

    Google Scholar 

  31. Zhou Y, Liao M, Zhu C, Hu Y, Tong T, Peng X et al (2018) ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int J Oral Sci 10:9

    PubMed  PubMed Central  Google Scholar 

  32. de Oliveira SGC, Vasconcelos CC, Lopes AJO, de Sousa Cartagenes MDS, Filho AKDB, do Nascimento FRF et al (2018) Candida infections and therapeutic stratégies: mechanisms of action for traditional and alternative agents. Front Microbiol 9:1351

    Google Scholar 

  33. Dantas SA, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B et al (2016) Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 34:111–118

    Google Scholar 

  34. Schonherr FA, Sparber F, Kirchner FR, Guiducci E, Trautwein-weidner K, Gladiator A et al (2017) The interspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol 10:1335–1350

    CAS  PubMed  Google Scholar 

  35. Braunsdorf C, LeibundGut-Landmann S (2018) Modulation of the fungal-host interaction by the intra-species diversity of C. albicans. Pathogens 7:11

    PubMed Central  Google Scholar 

  36. Reedy JL, Filler SG, Heitman J (2010) Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47:107

    CAS  PubMed  Google Scholar 

  37. Liu S, Liu W (2015) Components of the canclium-calcinerium signaling pathways in fungal cells and their potential as antifungal targets. Eukaryot Cell 14:4

    Google Scholar 

  38. Yu Q, Jia C, Dong Y, Zhang B, Xiao C, Chen Y et al (2015) Candida albicans autophagy, no longer a bystander: its role in tolerance to ER stress-related antifungal drugs. Fungal Genet Biol 81:238–249

    CAS  PubMed  Google Scholar 

  39. Shang-Jie Y, Ya-Lin C, Ying-Lie C (2015) Calcineurin signaling: lessons from Candida species. FEMS Microbiol 15:4

    Google Scholar 

  40. Wang L, Lin X (2012) Morphogenesis in fungal pathogenesis: shape, size and surface. PLoS Pathog 8:e1003027

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim S, Nguyen QB, Wolyniak MJ, Frechette G, Lehman CR, Fox BK et al (2018) Release of transcriptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes. PLoS ONE 13:e0192260

    PubMed  PubMed Central  Google Scholar 

  42. Sharma J, Rosiana S, Razzaq I, Shapiro RS (2019) Linking cellular morphogenesis with antifungal treatment and susceptibility in Candida pathogens. J Fungi 5:17

    CAS  Google Scholar 

  43. Sun JN, Solis NV, Phan QT, Bajwa JS, Kashlera H, Thompson A et al (2010) Host cell invasion and virulence mediated by Candida albicans Ssai. PLos Pathog 6:e1001181

    PubMed  PubMed Central  Google Scholar 

  44. Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6:e17046

    PubMed  PubMed Central  Google Scholar 

  45. Lindsay AK, Deveau A, Piispanen AE, Hogan DA (2012) Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot Cell 11:1219–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu Y, Su C, Liu H (2014) Candida albicans hyphal initiation and elongation. Trends Microbiol 22:707–714

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Blass M, Claus R et al (2015) The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. MBio 6:e00143

    PubMed  PubMed Central  Google Scholar 

  48. Wu Y, Li YH, Yu SB, Li WG, Liu XS, Zhao L et al (2016) A Genome-wide transcriptional analysis of yeast-hyphal transition in Candida tropicalis by RNA-Seq. PLoS ONE 11:e0166645

    PubMed  PubMed Central  Google Scholar 

  49. Kadry AA, El-Ganiny AM, El-Baz AM (2018) Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of Candida albicans. Afr Health Sci 18:1166–1174

    PubMed  PubMed Central  Google Scholar 

  50. Zaugg C, Borg-von Zepelin M, Reichard U, Sanglard D, Monod M (2001) Secreted aspartic proteinase family of Candida tropicalis. Infect Immun 69:405–412

    PubMed  PubMed Central  Google Scholar 

  51. Meenambiga SS, Venkataraghavan R, Biswal RA (2018) In silico analysis of plant phytochemicals against secreted aspartic proteinase enzyme of Candida albicans. J Appl Pharm Sci 8:140–150

    CAS  Google Scholar 

  52. Deepa K, Jeevitha T, Michael A (2015) In vitro evaluation of virulence factors of Candida species isolated from oral cavity. J Microbiol Antimicrob 7:28–32

    CAS  Google Scholar 

  53. Khedidja B, Abderrahman L (2011) Selection of orlistat as a potential inhibitor for lipase from Candida species. Bioinformation 7:125–129

    PubMed  PubMed Central  Google Scholar 

  54. Inci M, Atalay MA, Koç AN, Yula E, Evirgen O, Durmaz S et al (2012) Investigating virulence factors of clinical Candida isolates in relation to atmospheric conditions and genotype. Turk J Med Sci 42:1476–1483

    Google Scholar 

  55. Rossoni RR, Barbosa JO, Vilela SFG, Jorge AOC, Junqueira JC (2013) Comparison of the hemolytic activity between C. albicans and non-albicans Candida species. Braz Oral Res 27:484–489

    PubMed  Google Scholar 

  56. Tsang CSP, Chu FCS, Leung WK, Jin LJ, Samaranayake LP, Siu SC (2007) Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus. J Med Microbiol 56:1393–1399

    CAS  PubMed  Google Scholar 

  57. Wilson D, Naglik JR, Hube B (2016) The missing link between Candida albicans hyphal morphogenesis and host cell damage. PLOS Pathog 12:e1005867

    PubMed  PubMed Central  Google Scholar 

  58. Richardson JP, Mogavero S, Moyes DL, Blagojevic M, Krüger T, Verma AH et al (2018) Processing of Ece1p is critical for candidalysin maturation and fungal virulence. MBio 9:e02178–e02117

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    CAS  PubMed  Google Scholar 

  60. Murciano C, Moyes DL, Runglall M, Tobouti P, Islam A, Hoyer LL et al (2012) Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLos ONE 7:e33362

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Soll DR (2014) The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J Oral Microbiol 6:1

    Google Scholar 

  62. Meir J, Hartmann E, Eckstein MT, Guiducci E, Kirchner F, Rosenwald A et al (2018) Identification of Candida albicans regulatory genes governing mucosal infection. Cell Microbiol 20:e12841

    PubMed  Google Scholar 

  63. Shapiro RS, Zaas AK, Betancourt-Quiro M, Perfect JJ, Cowen LE (2012) The Hsp 90 co-chaperon sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS ONE 7:e44734

    CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Meara TR, Robbins N, Cowen LE (2017) The Hsp90 chaperone network modulates Candida virulence traits. Trends Microbiol 25:809–819

    PubMed  PubMed Central  Google Scholar 

  65. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR et al (2009) Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis and drug resistance. PLoS ONE 7:e44734

    Google Scholar 

  66. O’meara TR, Cowen LE (2014) Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cell Microbiol 16:473–481

    PubMed  Google Scholar 

  67. Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the Biology of Fungi. Biotech Res Int 11

  68. Matos TGF, Morais FV, Campos CBL (2013) Paracoccidioides brasiliensis proliferation and ROS levels under thermal stress and cooperates with calcineurin to control yeast to mycelium dimorphism. Med Mycol 51:413–421

    CAS  PubMed  Google Scholar 

  69. Cowen L, Shapiro RS (2010) Coupling temperature sensing and development. Hsp90 regulates morphogenetic signaling in Candida albicans. Virulence 1:45–48

    PubMed  PubMed Central  Google Scholar 

  70. Mishra S, Singh S, Misra K (2017b) Restraining pathogenicity in Candida albicans by taxifolin as an inhibitor of Ras1-pka pathway. Mycopathologia 182:953–965

    CAS  PubMed  Google Scholar 

  71. Habich C, Kempe K, Gomez FJ, Lillicrap M, Gaston H, van der Zee R et al (2006) Heat shock protein 60: identification of specific epitopes for binding to primary macrophages. FEBS Lett 580:115–120

    CAS  PubMed  Google Scholar 

  72. Kaul G, Thippeswamy H (2011) Role of heat shock proteins in diseases and their therapeutic potential. Ind J Microbiol 51:124–131

    CAS  Google Scholar 

  73. Fu MS, De Sordi L, Muhlschlegel FA (2012) Functional characterization of the small heat shock protein Hsp12p from Candida albicans. PLos ONE 7:e42894

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mayer FL, Wilson D, Jacobsen ID, Miramon P, Slesiona S, Bohovych IM et al (2012) Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS ONE 7:e38584

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans epithelial interactions and pathogenicity mechanisms, scratching the surface. Virulence 6:338–346

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang SX, Moyes DL, Richardson JP, Blagojevic M, Naglik JR (2016) Epithelial discrimination of commensal and pathogenic Candida albicans. Oral Dis 22:114–119

    PubMed  Google Scholar 

  77. Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Microbiol 32:21–27

    CAS  Google Scholar 

  78. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C (2016) Leibund, Gut-Landmann S. IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa. PLoS Pathog 12:e1005882

    PubMed  PubMed Central  Google Scholar 

  79. Caffrey AK, Obar JJ (2016) Alarming the innate immune system to invasive fungal. Curr Opin Microbiol 32:135–143

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lionakis MS (2014) New insights into innate immune control of systemic candidiasis. Med Mycol 52:555–564

    PubMed  PubMed Central  Google Scholar 

  81. Yano J, Noverr MC, Fidel PL (2012) Cytokines in the host response to Candida vaginitis: identifying a role for non-classical immune mediators, S100 alarmins. Cytokine 58:118–128

    CAS  PubMed  Google Scholar 

  82. Alexandra B (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 517529:11

    Google Scholar 

  83. Wang GS, Deng JH, Ma YH, Shi M, Li B (2012) Mechanisms, clinically curative effects and antifungal activities of cinnamon oil and progostemon oil complex against three species of Candida. J Tardit Chin Med 32:19–24

    Google Scholar 

  84. Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4:e35

    PubMed  PubMed Central  Google Scholar 

  85. Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748

    CAS  Google Scholar 

  86. Arkowitz RA, Bassilana M (2015) Regulation of hyphal morphogenesis by Ras and Rho small GTPases. Fungal Biol Rev 29:7–19

    Google Scholar 

  87. Martin R, Albrecht-Eckardt D, Brunke S, Hube B, Hunniger K, Kurzai O (2013) A core filamentation response network in Candida albicans is restricted to eight genes. PLoS ONE 8:e58613

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesins Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  89. de Groot PWJ, Bader O, de Boer AD, Weig M, Chauhan N (2013) Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12:470–481

    PubMed  PubMed Central  Google Scholar 

  90. Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459

    CAS  PubMed  Google Scholar 

  91. Fu Y, Phan QT, Luo G, Solis NV, Liu Y, Cormack BP (2013) UME6, a Novel Filament-Specific Regulator of Candida albicans Hyphal Extension and Virulence. Infect Immun 81:2528–2535

  92. Bailey DA, Feldmann PJF, Bovey M, Gow NAR, Brown AJP (1996) The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178:5353–5360

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J et al (2016) Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532:64–68

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lane S, Zhou S, Pan T, Dai O, Liu H (2001) The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1. Mol Cell Biol 21:6418–6428

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Panariello BHD, Klein MI, Pavarina AC, Duarte S (2017) Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. J Oral Microbiol 9:1385372

    PubMed  PubMed Central  Google Scholar 

  96. Glazier VE, Murante T, Murante D, Koselny K, Liu Y, Kim D et al (2017) Genetic analysis of the Candida albicans biofilm transription factor network using simple and complex haploinsufficiency. PLoS Genet 13:e1006948

    PubMed  PubMed Central  Google Scholar 

  97. Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human fungal pathogen Candida albicans, is a member of a conserved class of Bhlh proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Calderone R (1998) The INT1 of Candida albicans. Trends Microbiol 6:300–301

    CAS  PubMed  Google Scholar 

  100. Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the Candida albicans transcription factor Bcr1p. Curr Biol 15:1150–1155

    CAS  PubMed  Google Scholar 

  101. Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchel AP et al (2011) Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLos ONE 6:e16218

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Reyna-Beltran E, Iranzo M, Calderon-Gonzalez KG, Mondragon-Flores R, Labra-Barrios ML, Mormeneo S et al (2018) The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis and osmotic protection. J Biol Chem 293:4304–4323

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li L, Zhang T, Xu J, Wu J, Wang Y, Qiu X et al (2019) The synergism of the small molecule ENOblock and fluconazole against fluconazole-resistant Candida albicans. Front Microbiol 10:2071

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martin R, Moran GP, Jacobsen ID, Heyken A, Domey J, Sulivan DJ et al (2011) The Candida albicans-specific gene EED1 encodes a key regulatory of hyphal extension. PLos ONE 6:e18394

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C et al (2008) Mol Biol Cell 19:1354–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeidler U, Lettner T, Lassnig C, Muller M, Lajko R, Hintner H et al (2009) ME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. FEMS Yeast Res 9:126–142

    CAS  PubMed  Google Scholar 

  107. Carlisle PL, Kadosh D (2010) Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. Eukaryot Cell 9:1320–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Saputo S, Kumar A, Krysan DJ (2014) Efg1 directly regulates ACE2 expression to mediate cross talk between the Camp/pka and RAM pathways during Candida albicans morphogenesis. Eukaryot Cell 13:1169–1180

    PubMed  PubMed Central  Google Scholar 

  109. Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL (2017) Targeting Candida albicans filamentation for antifungal drug development. Virulence 8:150–158

    CAS  PubMed  Google Scholar 

  110. Maiti P, Ghorai P, Ghosh S, Kamthan M, Tyagi RK, Datta A (2015) Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans. Fungal Genet Biol 83:45–57

    CAS  PubMed  Google Scholar 

  111. Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:57–67

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans is down-regulated during filament induction. EMBO J 20:4753–4761

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109

    CAS  PubMed  Google Scholar 

  115. Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D et al (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Koch B, Barugahare AA, Lo TL, Huang C, Schittenhelm RB, Powell DR et al (2018) A metabolic checkpoint for the yeast-to-hyphae developmental switch regulated by endogenous nitric oxide signaling. Cell Rep 25:2244–2258

    CAS  PubMed  Google Scholar 

  117. Tan X, Fuchs BB, Wang Y, Chen W, Yuen GJ, Chen RB et al (2014) The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis. PLoS ONE 9:e94468

    PubMed  PubMed Central  Google Scholar 

  118. El-Khoury P, Awad A, Wex B, Khalaf RA (2018) Proteomic analysis of a Candida albicans pir32 null strain reveals proteins involved in adhesion, filamentation and virulence. PLoS ONE 13:e0194403

    PubMed  PubMed Central  Google Scholar 

  119. Bar-Yosef H, Gildor T, Ramirez-Zavala B, Schmauch C, Weissman Z, Pinsky M et al (2018) A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1. Front Cell Infect Microbiol 8:17

    PubMed  PubMed Central  Google Scholar 

  120. Mishra R, Driven FV, Dechant R, Oh S, Neon NL, Lee S et al (2017a) Protein kinase C. and calcineurin cooperatively mediate cell survival under compressive mechanical stress. Proc Natl Acad Sci USA 114:13471–13476

    CAS  PubMed  Google Scholar 

  121. Lu Y, Su C, Wang A, Liu H (2011) Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 9:e1001105

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu H (2001) Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4:728–735

    CAS  PubMed  Google Scholar 

  123. Banerjee M, Lazzell AL, Romo JA, Lopez-Ribot JL, Kadosh D (2019) Filamentation is associated with reduced pathogenesis of multiple non-albicans Candida species. mSphere 4:e00656–e00619

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Johnson A (2003) The biology of mating in Candida albicans. Nat Rev Microbiol 1:106–116

    CAS  PubMed  Google Scholar 

  125. Alby K, Bennett RJ (2009) Stress-induced phenotypic switching in Candida albicans. Mol Biol Cell 20:3178–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bommanavar SB, Gugwad S, Malik N (2017) Phenotypic switch: the enigmatic white-gray-opaque transition system of Candida albicans. J Oral Maxillofac Pathol 21:82–86

    PubMed  PubMed Central  Google Scholar 

  127. Solis NV, Park YN, Swidergall M, Daniels KJ, Filler SG, Soll DR (2018) Candida albicans white-opaque switching influences virulence but not mating during oropharyngeal candidiasis. Infect Immun 86:e00774–e00717

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W et al (2014) Discovery of a “white-gray-opaque” tristable phenotypic switching system in Candida albicans: roles of non-genetic diversity in host adaptation. PLoS Biol 12:e1001830

    PubMed  PubMed Central  Google Scholar 

  129. Alkafeef SS, Yu C, Huang L, Liu H (2018) Wor1 establishes opaque cell fate through inhibition of the general co-repressor Tup1 in Candida albicans. PLoS Genet 14:e1007176

    PubMed  PubMed Central  Google Scholar 

  130. Yang SL, Zeng G, Chan FY, Wang YM, Dongliang Y, Wang Y (2018) Sac7 and Rho1 regulate the white-to-opaque switching in Candida albicans. Sci Rep 8:875

    PubMed  PubMed Central  Google Scholar 

  131. Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhauser J (2013) White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot cell 12:50–58

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Perini HF, Moralez ATP, Almeida RSC, Panagio LA, Junior AOG, Barcellos FG et al (2019) Phenotypic switching in Candida tropicalis alters host-pathogen interactions in a Galleria mellonella infection model. Sci Rep 9:12555

    PubMed  PubMed Central  Google Scholar 

  133. Xie J, Du H, Guan G, Tong Y, Kourkoumpetis TK, Zhang L et al (2012) N-acetylglucosamine induces white-to-opaque switching and mating in Candida tropicalis, providing new insights into adaptation and fungal sexual evolution. Eukaryot Cell 11:773–782

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Silva S, Rodriguez CF, Araujo D, Rodriguez ME, Henriques M (2017) Candida species biofilm antifungal resistsance. J Fungi (Basel) 3

  135. Deorukhkar SC, Roushani S (2017) Virulence traits contributing to pathogenicity of Candida species. J Microbiol Exp 5:00140

    Google Scholar 

  136. Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848

    PubMed  PubMed Central  Google Scholar 

  137. Nerurkar A, Solanky P, Chavda N, Baria H (2012) Isolation of Candida species in clinical specimens and its virulence factors: the biofilm. J Med Sci Public Health 1:5455

    Google Scholar 

  138. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM (2013) Mendes-Giannini, MJS Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24

    CAS  PubMed  Google Scholar 

  139. Subramanya SH, Sharan NK, Bara BP, Hama D, Nayak N, Prakash PY et al (2017) Diversity, in-vitro virulence traits and antifungal susceptibility pattern of gastrointestinal yeast flora of healthy poultry, Gallus gallus domesticus. BMC Microbiol 17:113

    PubMed  PubMed Central  Google Scholar 

  140. Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD et al (2017) Biofilm-forming capability of highly virulent, multidrug-resistant Candida auris. Emerg Infect Dis 23:328–331

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Pereira-Cenci T, Del Bel Cury AA, Crielaard W, Ten Care JM (2008) Development of Candida associated denture stomatitis: new insights. J Appl Oral Sci 16:86–94

    PubMed  PubMed Central  Google Scholar 

  142. Lauren Bach JM, Epstein JB (2009) Treatment strategies for oropharyngeal candidiasis. Expert Opin Pharmacother. 10:1413–1421

    Google Scholar 

  143. Rautemaa R, Ramage G (2011) Oral candidiasis-clinical challenges of a biofilm disease. Crit Rev Microbiol 37:328–336

    CAS  PubMed  Google Scholar 

  144. Araújo D, Henriques M, Silva S (2017) Portrait of Candida species biofilm regulatory network genes. Trends Microbiol 25:62–75

    PubMed  Google Scholar 

  145. Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med 5:28

    Google Scholar 

  146. Richard ML, Plaine A (2007) Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133

    CAS  PubMed  Google Scholar 

  147. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD et al (2013) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138

    Google Scholar 

  148. Lagree K, Mon HH, Mitchell AP, Ducker WA (2018) Impact of surface topography on biofilm formation by Candida albicans. PLoS ONE 13:e0197925

    PubMed  PubMed Central  Google Scholar 

  149. Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY (2018) Transcriptomic and genomic approaches for unravelling Candida albicans biofilm formation and drug resistance-an update. Genes 9:540

    PubMed Central  Google Scholar 

  150. Mayer FL, Wilson D, Humbe B (2013) Candida albicans pathogenicity mechanism. Virulence 4:119–128

    PubMed  PubMed Central  Google Scholar 

  151. Miramon P, Lorenz MC (2017) A feast for Candida metabolic plasticity confers an edge for virulence. PLoS pathog 13:e1006144

  152. Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC (2016) Robust extracellular pH modulation by Candida albicans during growth in carboxylic acids. mBio US 7

  153. Dunn MF, Ramirez-Trujillo JA, Hernandez-Lucas I (2009) Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166–3175

    CAS  PubMed  Google Scholar 

  154. Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86

    CAS  PubMed  Google Scholar 

  155. Cheah H-L, Lim V, Sandai D (2014) Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE 9:e95951

    PubMed  PubMed Central  Google Scholar 

  156. Li L, Liao Z, Yang Y, Lv L, Cao Y, Zhu Z (2018) Metabolomic profiling for the identification of potential biomarkers involved in a laboratory azole resistance in Candida albicans. PLoS ONE 13:e0192328

    PubMed  PubMed Central  Google Scholar 

  157. Laurian R, Dementhon K, Doumeche B, Soulard A, Noel T, Lemaire M (2019) Hexokinase and glucokinases are essential for fitness and virulence in the pathogenic yeast Candida albicans. Front Microbiol 10:327

    PubMed  PubMed Central  Google Scholar 

  158. Han TL, Cannon RD, Gallo SM, Villas-boas SG (2019) A metabolomics study of the effect of Candida albicans glutamate dehydrogenase deletion on growth and morphogenesis. Npj Biofilms Microbiomes 5:13

    PubMed  PubMed Central  Google Scholar 

  159. Fourie R, Kuloyo OO, Mochochko BM, Albertyn J, Pohl CH (2018) Iron at the centre of Candida albicans interactions. Front Cell Infect Microbiol 8:185

    PubMed  PubMed Central  Google Scholar 

  160. Chew SY, Chee WJY, Than LTY (2019) The glyoxylate cycle and alternative carbon metabolism as metabolic adaptation strategies to Candida glabrata: perspectives from Candida albicans and Saccharomyes cerevisiae. J Biomed Sci 26:52

    PubMed  PubMed Central  Google Scholar 

  161. Peters BM, Jabra-Rizk MA, O’May GA, Costerton JW, Shirtliff ME (2012) Polymicrobial interactions: impact on pathogenesis and human diseases. Clin Microbiol Rev 25:193–213

    PubMed  PubMed Central  Google Scholar 

  162. Belkaid Y, Harrison OJ (2017) Homeostatic immunity and the microbiota. Immunity 46:562–576

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Bruno DCF, Bartelli TF, Rodrigues CR, Briones, MRS. Experimental evolution and genome data analysis of Candida albicans reveals cryptic bacteria in single yeast colonies. Cold spring Harbor Laboratory 2017 Doi: https://doi.org/10.1101/168500

  164. Montelongo-Jauregui D, Lopez-Ribot JL (2018) Candida interaction with the oral bacterial microbiota. J Fungi 4:122

    CAS  Google Scholar 

  165. Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:e1000886

    PubMed  PubMed Central  Google Scholar 

  166. Sonnenborn U (2016) Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 363

  167. Cabral DJ, Wurster JI, Flokas ME, Alevizakos M, Zabat M, Korry BJ et al (2017) The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Sci Rep 7:11040

    PubMed  PubMed Central  Google Scholar 

  168. Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hansch GM, Filler SG et al (2015) Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161:168–181

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Lobo CIV, Rinaldi TB, Christiano CMS, Leite LS, Barbugil PA, Klein MI (2019) Dual-species biofilms of Streptococcus mutans and Candida albicans exhibit more biomass and are mutually beneficial compared with single-species biofilms. J Oral Microbiol 11:1581520

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kraneveld EA, Buija MJ, Bonder MV, Keijser BJF, Crielaard W, Zaura E (2012) The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS ONE 7:e42770

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Tati S, Davidow P, McCall A, Hwang-Wong E, Rojas IG, Cormack B et al (2016) Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathog 12:e1005522

    PubMed  PubMed Central  Google Scholar 

  172. Cabral DJ, Penumutchu S, Norris C, Morones-Ramirez JR, Belenky P (2018) Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. Microbial cell 5:249–255

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Camarillo-Marquez O, Cordova-Alcantara IM, Hernandez-Rodriquez CH, Garcia-Perez BE, Martinez-Rivera MA, Rodriguez-Tovar AV (2018) Antagonistic interaction of Staphylococcus aureus towards Candida glabrata during in vitro biofilm formation is caused by an apoptotic mechanism. Front Microbiol 9:2031

    PubMed  PubMed Central  Google Scholar 

  174. Kruger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ (2019) Fungal-bacterial interactions in health and disease. Pathogens 8:70

    PubMed Central  Google Scholar 

  175. de Barros PP, Rossini RD, Freire F, de Camargo-Ribeiro F, Lopes L, Junqueira JC et al (2018) Candida tropicalis affects the virulence profile of Candida albicans: as in vitro and in vivo study. Pathog Dis 76:2

  176. Malcok HK, Aktas E, Ayyildiz A, Yigit N, Yazgi H (2009) Hemolytic activities of the Candida species in liquid medium. Eurasian J Med 41:95–98

    PubMed  PubMed Central  Google Scholar 

  177. Linares CE, de Loreto ES, Silveira CP, Rozzatti P, Scheid LA, Santurio JM et al (2007) Enzymatic and hemolytic activities of Candida dubliniensis strains. Rev Inst Med Trop SP 49:203–206

    Google Scholar 

  178. Pendrak ML, Roberts DD (2007) Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Med Mycol 45:61–71

    CAS  PubMed  Google Scholar 

  179. Luo G, Samaranayake LP, Yau JYY (2001) Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol 39:2971–2974

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Chin VK, Foong KJ, Maha A, Rusliza B, Norhafizah M, Ng KP et al (2013) Candida albicans isolates from a Malaysian hospital exhibit more potent phospholipase and haemolysin activities than non-albicans Candida isolates. Trop Biomed 30:654–662

    CAS  PubMed  Google Scholar 

  181. Sathiya T, Malar AS, Morthy K, Punitha T, Vinodhini R, Saranya AS (2015) Candida albicans and non albicans species: a study of biofilm production and putative virulence properties. JOHRP 4:164–175

    Google Scholar 

  182. Jasim ST, Flayyih MT, Hassan A (2016) Isolation and identification of Candida spp. from different clinical specimens and study the virulence factors. World J Pharm Pharm Sci 3:121–137

    Google Scholar 

  183. Yigit N, Aktas E (2009) Comparison of the efficacy of different blood medium in determining the hemolytic activity of Candida species. J Med Mycol 19:110–115

    Google Scholar 

  184. Sachin CD, Ruchi K, Santosh S (2012) In vitro evaluation of proteinase: phospholipase and haemolysin activities of Candida species isolated from clinical specimens. Int J Med Biomed Res 1:153–157

    CAS  Google Scholar 

  185. Wan L, Luo G, Lu H, Xuan D, Cao H, Zhang J (2015) Changes in the hemolytic activity of Candida species by common electrolytes. BMC Microbiol 15:171

    PubMed  PubMed Central  Google Scholar 

  186. Arslan S, Koe AN, Sekerci AE, Tanriverdi F, Sar H, Aydemir G et al (2016) Genotypes and virulence factors of Candida species isolated from oral cavities of patients with type 2 diabetes mellitus. Turk J Med Sci 46:18–27

    CAS  PubMed  Google Scholar 

  187. Bandana K, Jashandeep K, Jagdeep K (2018) Phospholipase in bacterial virulence and pathogenesis. Adv Biotechnol Microbiol 10:555798

    Google Scholar 

  188. Yang YL (2003) Virulence factors of Candida species. J Microbiol Immunol Infect 36:223–228

    CAS  PubMed  Google Scholar 

  189. Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D et al (2003) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in human correlates with active oral and vaginal infections. J Infect Dis 188:469–479

    CAS  PubMed  Google Scholar 

  190. Samaranayake YH, Dassanayake RS, Cheung BP, Jayatilake JA, Yeung KW, Yau JY et al (2006) Differential phospholipase gene expression by Candida albicans in artificial media and cultured human oral epithelium. APMIS 114:857–866

    CAS  PubMed  Google Scholar 

  191. Pandey N, Gupta MK, Tilak R (2018) Extracellular hydrolytic enzyme activities of the different Candida spp. isolated from the blood of the intensive care unit-admitted patients. J Lab Physicians 10:4

    Google Scholar 

  192. Borelli C, Ruge E, Lee JH, Schaller M, Vogelsang A, Monod M et al (2008) X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 72:1308–1319

    CAS  PubMed  Google Scholar 

  193. Aya A, Marwa A, Ali A (2018) Distribution of secreted aspartyl protease (SAP) virulence genes and antifungal resistance genes at vulvovaginal candidiasis isolates. GSC Biol Pharm Sci 5:86–94

    CAS  Google Scholar 

  194. Lima JS, Braga KRGS, Vieira CA, Souza WWR, Chavez-Pavoni JH, de Araujo C et al (2018) Genotypic analysis of secreted aspartyl proteinase in vaginal Candida albicans isolates. J Bras Patol Med Lab 54:28–33

    CAS  Google Scholar 

  195. Ramos LS, Barbedo LS, Braga-Silva LA, Santos ALS, Pinto MRP, Sgarb DBG (2015) Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 32:122–125

    Google Scholar 

  196. Tsai P, Chen Y, Hsu P, Lan C (2013) Study of Candida albicans and its interactions with the host: a mini review. Biomedicine 3:51–64

    Google Scholar 

  197. Stehr F, Felk A, Gacser A, Kretschmar M, Mahnb B, Neuber K et al (2004) Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 4:4–5

    Google Scholar 

  198. Paraje MG, Correa SG, Renna MS, Theumer M, Sotomayor CE (2008) Candida albicans-secreted lipase induces injury and steatosis in immune and parenchymal cells. Can J Microbiol 54:647–659

    CAS  PubMed  Google Scholar 

  199. Park M, Do E, Jung WH (2013) Lipolytic enzymes involved in the virulence of human pathogenic fungi. Mycobiology 41:67–72

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Gácser A, Schafer W, Nosanchuk JS, Salomon S, Nosanchuk JD (2007) Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet Biol 44:1336–1341

    PubMed  Google Scholar 

  201. Padmajakshi G, Saini S, Deorukhkar S, Ramana KV (2014) Coagulase activity of Candida Spp isolated from HIV seropositive patients using different animal plasma. Am J Microbiol Res 2:57–59

    Google Scholar 

  202. Swidergall M, Khalaji M, Solis NV, Moyes DL, Drummond RA, Hube B et al (2019) Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J Infect Dis 9:1477–1488

    Google Scholar 

  203. Ho J, Yang X, Nikou SA, Kichik N, Donkin A, Ponde NO et al (2019) Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat Commun 10:2297

    PubMed  PubMed Central  Google Scholar 

  204. Richardson JP, Willems HME, Moyes DL, Shoaie S, Barker KS, Tan SL et al (2017) Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect Immun 86:e00645–e00617

    Google Scholar 

  205. Verma AH, Richardson JP, Zhou C, Coleman BM, Moyes DL, Ho J et al (2017) Oral epithelial cells orchestrate innate type 17 responses to Candida albicans trough the virulence factor candidalysin. Sci Immunol 2:eaam8834

    PubMed  PubMed Central  Google Scholar 

  206. Verma AH, Zafar H, Ponde NO, Hepworth OW, Shira D, Aggor FEY et al (2018) IL-36 and IL-I/IL-17 drive immunity to oral candidiasis via parallel mechanisms. J Immunol 201:627–634

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Burnie JP, Carter TL, Hodgetts SL, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30:53–88

    CAS  PubMed  Google Scholar 

  208. Cuellar-Cruz M, Lopez-Romero E, RRuiz-Bac E, Zazueta-Sandoval R (2014) Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol 69:733–739

    CAS  PubMed  Google Scholar 

  209. Nicholls S, Leach MD, Priest CL, Brown AJ (2009) Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligatory associated with warm-blooded animals. Mol Microbiol 74:844–861

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Nair R, Khandelwal NK, Shariq MM, Redhu AK, Gaur NA, Shaikh S et al (2018) Identification of genome-wide binding sites of heat shock factor 1, HSF1 under basal conditions in the human pathogenic yeast, Candida albicans. AMB Express 8:116

    PubMed  PubMed Central  Google Scholar 

  211. Brown AJ, Brown GD, Netea MG, Gow NA (2014) Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22:614–622

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Li X, Sun S (2016) Targeting the fungal calcium-calcineurin signaling network in overcoming drug resistance. Future Med Chem 8:1379–1381

    CAS  PubMed  Google Scholar 

  213. Jaya N, Garcia V, Vierling E (2009) Substrate binding site flexibility of the small heat shock protein molecular chaperones. Process Natl Acad Sci USA 106:15604–15609

    CAS  Google Scholar 

  214. Veri A, Cowen LE (2014) Progress and prospects for targeting Hsp90 to treat fungal infections. Parasitology 141:1127–1137

    CAS  PubMed  Google Scholar 

  215. Nadeem SG, Shafiq A, Hakim S, Anjum Y (2013) Effect of growth media, pH and temperature on yeast to hyphal transition in Candida albicans. Open J Med Microbiol 3:185–192

    Google Scholar 

  216. Vylkova S (2017) Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 13:e1006149

    PubMed  PubMed Central  Google Scholar 

  217. Westman J, Moran G, Mogavero S, Huge B, Grinstein S (2018) Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. MBio 11:9

    Google Scholar 

  218. Stewart E, Cow NAR, Bowen DV (1988) Cytoplasmic alkalinization during germ tube formation in Candida albicans. J Gen Microbiol 134:1079–1087

    CAS  PubMed  Google Scholar 

  219. Ottilie S, Goldgof GM, Cheung AL, Walker JL, Vigil E, Allen KE et al (2018) Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies. J Chem 10:6

    Google Scholar 

  220. Rane HS, Hayek SR, Frye JE, Abeyta EL, Bernardo SM, Parra KJ et al (2019) Candida albicans Pma1p contributes to growth, pH homeostasis, and hyphal formation. Front Microbiol 10:1012

    PubMed  PubMed Central  Google Scholar 

  221. Sun Y, Cao C, Jia W, Tao L, Guan G, Huang G (2015) pH regulates white-opaque switching and sexual mating in Candida albicans. Eukaryot Cell 14:1127–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD, Brown I et al (2017) Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS One Pathog 13:e1006403

    Google Scholar 

  223. Spritzer M, Wiederhold NP (2018) Reduced antifungal susceptibility of vulvovaginal Candida species at normal vaginal pH levels: clinical implications. J Low Genit Tract Dis 22:152–158

    Google Scholar 

  224. Lourenco A, Pedro NA, Salazar SB, Mira NP (2019) Effect of acetic acid and lactic acid at low pH in growth and azole resistance of Candida albicans and Candida glabrata. Front Microbiol 9:3265

    PubMed  PubMed Central  Google Scholar 

  225. Marotta DH, Nantel A, Ssukal L, Teubl JR, Rauceo JM (2013) Genome-wide transcriptional profiling and enrichment mapping reveal divergent and conserved roles of Sko1 in the Candida albicans osmotic stress response. Genomics 102:363–371

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Jacobsen MD, Beynon RJ, Gethings LA, Claydon AJ, Langridge JI, Vissers JPC et al (2018) Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics. Sci Rep 8:14492

    PubMed  PubMed Central  Google Scholar 

  227. Kos I, Patterson MJ, Znaidi S, Kaloriti D, Dantas AS, Herrero-de-Dios CM et al (2016) Mechanisms underlying the delayed activation of the cap1 transcription factor in Candida albicans following combinatorial oxidative and cationic stress important for phagocytic potency. MBio 7:e00331–e00316

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Conrad KA, Rodriguez R, Salcedo EC, Rauceo JM (2018) The Candida albicans stress response gene stomatin-like protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells. PLoS One 13:e0192250

    PubMed  PubMed Central  Google Scholar 

  229. Kaloriti D, Jacobsen M, Yin Z, Patterson M, Tillmann A, Smith DA et al (2014) Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. MBio 5:e01334–e01314

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chaillot J, Tebbji F, Remmal A, Boone C, Brown GW, Bellaoui M et al (2015) The monoterpene carvacrol generates endoplasmic reticulum stress in the pathogenic fungus Candida albicans. Antimicrob Agents Chemother 59:4584–4592

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S (2019) Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep 9:8872

    PubMed  PubMed Central  Google Scholar 

  232. Nobile SM, Johnson AO (2007) Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 41:193–211

    Google Scholar 

  233. Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ (2018) Functional diversification accompanies gene family expansion of MED2 homologs on Candida albicans. PLoS Genet 14:e1007326

    PubMed  PubMed Central  Google Scholar 

  234. Nobile CJ, Nett JE, Hernday AD, Hofmann OR, Deneault JS, Mantel A et al (2009) Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7:e1000133

    PubMed  PubMed Central  Google Scholar 

  235. Naglik JR, Moyes DL, Wachtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microb Infect 13:963–976

    CAS  Google Scholar 

  236. Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesion and invasion. Eukaryot Cell 10:168–173

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeka Innocent Nweze.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mba, I.E., Nweze, E.I. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 39, 1797–1819 (2020). https://doi.org/10.1007/s10096-020-03912-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-020-03912-w

Keywords

Navigation