Skip to main content

Advertisement

Log in

Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The molecular detection of microorganisms in liquid samples generally requires their enrichment or isolation. The aim of our study was to evaluate the capture and pre-concentration of bacteria by immobilized particular cationic antimicrobial peptides, called synthetic anti-lipopolysaccharide peptides (SALP). For the proof-of-concept and screening of different SALP, the peptides were covalently immobilized on glass slides, and the binding of bacteria was confirmed by microscopic examination of the slides or their scanning, in case of fluorescent bacterial cells. The most efficient SALP was further tethered to magnetic beads. SALP beads were used for the magnetic capture of Escherichia coli in liquid samples. The efficiency of this strategy was evaluated using polymerase chain reaction (PCR). Covalently immobilized SALP were capable of capturing bacteria in liquid samples. However, PCR was hampered by the unspecific binding of DNA to the positively charged peptide. We developed a method for DNA recovery by the enzymatic digestion of the peptide, which allowed for a successful PCR, though the method had its own adverse impact on the detection and, thus, did not allow for the reliable quantitative analysis of the pathogen enrichment. Immobilized SALP can be used as capture molecules for bacteria in liquid samples and can be recommended for the design of the assays or decontamination of the fluids. For the accurate subsequent detection of bacteria, DNA-independent methods should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barken KB, Haagensen JA, Tolker-Nielsen T (2007) Advances in nucleic acid-based diagnostics of bacterial infections. Clin Chim Acta 384:1–11

    Article  CAS  PubMed  Google Scholar 

  2. Jannes G, De Vos D (2006) A review of current and future molecular diagnostic tests for use in the microbiology laboratory. Methods Mol Biol 345:1–21

    CAS  PubMed  Google Scholar 

  3. Picard FJ, Bergeron MG (2002) Rapid molecular theranostics in infectious diseases. Drug Discov Today 7:1092–1101

    Article  CAS  PubMed  Google Scholar 

  4. Yang S, Rothman RE (2004) PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect Dis 4:337–348

    Article  CAS  PubMed  Google Scholar 

  5. Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C (2004) Pre-PCR processing: strategies to generate PCR-compatible samples. Mol Biotechnol 26:133–146

    Article  PubMed  Google Scholar 

  6. Lantz PG, Abu Al-Soud W, Knutsson R, Hahn-Hägerdal B, Rådström P (2000) Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples. Biotechnol Annu Rev 5:87–130

    Article  CAS  PubMed  Google Scholar 

  7. Hansen WL, Bruggeman CA, Wolffs PF (2009) Evaluation of new preanalysis sample treatment tools and DNA isolation protocols to improve bacterial pathogen detection in whole blood. J Clin Microbiol 47:2629–2631

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M (2010) The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 23:235–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brewster JD (2003) Isolation and concentration of Salmonellae with an immunoaffinity column. J Microbiol Methods 55:287–293

    Article  CAS  PubMed  Google Scholar 

  10. Enroth H, Engstrand L (1995) Immunomagnetic separation and PCR for detection of Helicobacter pylori in water and stool specimens. Clin Microbiol 33:2162–2165

    CAS  Google Scholar 

  11. Fernandes CP, Seixas FK, Coutinho ML, Vasconcellos FA, Moreira AN, Conceição FR, Dellagostin OA, Aleixo JA (2008) An immunomagnetic separation-PCR method for detection of pathogenic Leptospira in biological fluids. Hybridoma (Larchmt) 27:381–386

    Article  CAS  Google Scholar 

  12. Fu Z, Rogelj S, Kieft TL (2005) Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol 99:47–57

    Article  CAS  PubMed  Google Scholar 

  13. Qiu J, Zhou Y, Chen H, Lin JM (2009) Immunomagnetic separation and rapid detection of bacteria using bioluminescence and microfluidics. Talanta 79:787–795

    Article  CAS  PubMed  Google Scholar 

  14. Wright DJ, Chapman PA, Siddons CA (1994) Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol Infect 113:31–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107:19207–19212. doi:10.1073/pnas.1008768107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Soares JW, Morin KM, Mello CM (2004) Antimicrobial peptides in biosensing applications. Report of US Army Research, Development, & Engineering Command. Available online at: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA433515. Retrieved 11 Dec 2014

  17. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  18. Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44:2086–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Schuerholz T, Brandenburg K, Marx G (2012) Antimicrobial peptides and their potential application in inflammation and sepsis. Crit Care 16:207

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gutsmann T, Razquin-Olazarán I, Kowalski I, Kaconis Y, Howe J, Bartels R, Hornef M, Schürholz T, Rössle M, Sanchez-Gómez S, Moriyon I, Martinez de Tejada G, Brandenburg K (2010) New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob Agents Chemother 54:3817–3824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kaconis Y, Kowalski I, Howe J, Brauser A, Richter W, Razquin-Olazarán I, Iñigo-Pestaña M, Garidel P, Rössle M, Martinez de Tejada G, Gutsmann T, Brandenburg K (2011) Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J 100:2652–2661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Heinbockel L, Sánchez-Gómez S, Martinez de Tejada G, Dömming S, Brandenburg J, Kaconis Y, Hornef M, Dupont A, Marwitz S, Goldmann T, Ernst M, Gutsmann T, Schürholz T, Brandenburg K (2013) Preclinical investigations reveal the broad-spectrum neutralizing activity of peptide Pep19-2.5 on bacterial pathogenicity factors. Antimicrob Agents Chemother 57:1480–1487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Brandenburg K (2009) Novel antimicrobial peptides. Patent no. PCT/EP2009/002565

  24. Maheux AF, Picard FJ, Boissinot M, Bissonnette L, Paradis S, Bergeron MG (2009) Analytical comparison of nine PCR primer sets designed to detect the presence of Escherichia coli/Shigella in water samples. Water Res 43:3019–3028

    Article  CAS  PubMed  Google Scholar 

  25. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  CAS  PubMed  Google Scholar 

  26. Peters BM, Shirtliff ME, Jabra-Rizk MA (2010) Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6:e1001067. doi:10.1371/journal.ppat.1001067

    Article  PubMed Central  PubMed  Google Scholar 

  27. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MC (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7:1431–1440

    Article  CAS  PubMed  Google Scholar 

  28. Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4:46–71

    Article  CAS  Google Scholar 

  29. Li Y, Kumar KN, Dabkowski JM, Corrigan M, Scott RW, Nüsslein K, Tew GN (2012) New bactericidal surgical suture coating. Langmuir 28:12134–12139

    Article  CAS  PubMed  Google Scholar 

  30. Kulagina NV, Shaffer KM, Ligler FS, Taitt CR (2007) Antimicrobial peptides as new recognition molecules for screening challenging species. Sensors Actuators B Chem 121:150–157

    Article  CAS  Google Scholar 

  31. Scott MG, Gold MR, Hancock RE (1999) Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria. Infect Immun 67:6445–6453

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  33. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  CAS  PubMed  Google Scholar 

  34. Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10:585–606

    Article  CAS  PubMed  Google Scholar 

  35. Rydlo T, Rotem S, Mor A (2006) Antibacterial properties of dermaseptin S4 derivatives under extreme incubation conditions. Antimicrob Agents Chemother 50:490–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Arcidiacono S, Pivarnik P, Mello CM, Senecal A (2008) Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157:H7. Biosens Bioelectron 23:1721–1727

    Article  CAS  PubMed  Google Scholar 

  37. Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR (2006) Antimicrobial peptide-based array for Escherichia coli and Salmonella screening. Anal Chim Acta 575:9–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The published work was funded by the German Federal Ministry of Education and Research [BMBF; project MinoLab (number 16SV4030) and project number 01GU0824].

Conflict of interest

Klaus Brandenburg is also a founder and CSO of the company Brandenburg Antiinfektiva GmbH. Development and investigation of the described peptide Pep19-2.5, also called Aspidasept®, is one of the ongoing activities of this company. Here, we declare that the research work described in this manuscript was neither sponsored nor had any other commercial relation to the aforementioned enterprise. Thus, we declare no conflicts of interest in regard to this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sandetskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandetskaya, N., Engelmann, B., Brandenburg, K. et al. Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria. Eur J Clin Microbiol Infect Dis 34, 1639–1645 (2015). https://doi.org/10.1007/s10096-015-2399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2399-5

Keywords

Navigation