Skip to main content
Log in

Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Pan-resistant Acinetobacter baumannii have prompted the search for therapeutic alternatives. We evaluate the efficacy of four cecropin A-melittin hybrid peptides (CA-M) in vivo. Toxicity was determined in mouse erythrocytes and in mice (lethal dose parameters were LD0, LD50, LD100). Protective dose 50 (PD50) was determined by inoculating groups of ten mice with the minimal lethal dose of A. baumannii (BMLD) and treating with doses of each CA-M from 0.5 mg/kg to LD0. The activity of CA-Ms against A. baumannii was assessed in a peritoneal sepsis model. Mice were sacrificed at 0 and 1, 3, 5, and 7-h post-treatment. Spleen and peritoneal fluid bacterial concentrations were measured. CA(1–8)M(1–18) was the less haemolytic on mouse erythrocytes. LD0 (mg/kg) was 32 for CA(1–8)M(1–18), CA(1–7)M(2–9), and Oct-CA(1–7)M(2–9), and 16 for CA(1–7)M(5–9). PD50 was not achieved with non-toxic doses (≤LD0). In the sepsis model, all CA-Ms were bacteriostatic in spleen, and decreased bacterial concentration (p < 0.05) in peritoneal fluid, at 1-h post-treatment; at later times, bacterial regrowth was observed in peritoneal fluid. CA-Ms showed local short-term efficacy in the peritoneal sepsis model caused by pan-resistant Acinetobacter baumannii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodriguez-Bano J, Cisneros JM, Fernandez-Cuenca F, Ribera A, Vila J, Pascual A, Martinez-Martinez L, Bou G, Pachon J (2004) Clinical features and epidemiology of Acinetobacter baumannii colonization and infection in Spanish hospitals. Infect Control Hosp Epidemiol 25:819–824

    Article  PubMed  Google Scholar 

  2. Vila J, Pachon J (2008) Therapeutic options for Acinetobacter baumannii infections. Expert Opin Pharmacother 9:587–599

    Article  PubMed  CAS  Google Scholar 

  3. Fournier PE, Richet H (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42:692–699

    Article  PubMed  Google Scholar 

  4. Villegas MV, Hartstein AI (2003) Acinetobacter outbreaks, 1977–2000. Infect Control Hosp Epidemiol 24:284–295

    Article  PubMed  Google Scholar 

  5. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836

    Article  PubMed  CAS  Google Scholar 

  6. Towner KJ, Levi K, Vlassiadi M (2008) Genetic diversity of carbapenem-resistant isolates of Acinetobacter baumannii in Europe. Clin Microbiol Infect 14:161–167

    Article  PubMed  CAS  Google Scholar 

  7. Valencia R, Arroyo LA, Conde M, Aldana JM, Torres MJ, Fernandez-Cuenca F, Garnacho-Montero J, Cisneros JM, Ortiz C, Pachon J, Aznar J (2009) Nosocomial outbreak of infection with pan-drug-resistant Acinetobacter baumannii in a tertiary care university hospital. Infect Control Hosp Epidemiol 30:257–263

    Article  PubMed  Google Scholar 

  8. Ganz T (2004) Defensins: antimicrobial peptides of vertebrates. C R Biol 327:539–549

    Article  PubMed  CAS  Google Scholar 

  9. Giuliani A, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2:33

    Article  Google Scholar 

  10. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  PubMed  CAS  Google Scholar 

  11. Khandelia H, Ipsen JH, Mouritsen OG (2008) The impact of peptides on lipid membranes. Biochim Biophys Acta 1778:1528–1536

    Article  PubMed  CAS  Google Scholar 

  12. Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  PubMed  CAS  Google Scholar 

  13. Rivas L, Andreu D (2003) Cecropin-melittin hybrid peptides as versatile templates in the development of membrane active antibiotics agents. In: Menestrina G, Dalla Serra M (eds) Pore-forming peptides and protein toxins. Harwood Academic Publishers, Reading, Berkshire, United Kingdom, pp 215–259

    Google Scholar 

  14. Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, D'Amato G, Del Prete MS, Orlando F, Kamysz W, Lukasiak J, Saba V, Scalise G (2003) Administration of protegrin peptide IB-367 to prevent endotoxin induced mortality in bile duct ligated rats. Gut 52:874–878

    Article  PubMed  CAS  Google Scholar 

  15. Ghiselli R, Giacometti A, Cirioni O, Orlando F, Mocchegiani F, Pacci AM, Scalise G, Saba V (2001) Therapeutic efficacy of the polymyxin-like peptide ranalexin in an experimental model of endotoxemia. J Surg Res 100:183–188

    Article  PubMed  CAS  Google Scholar 

  16. Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460

    Article  PubMed  CAS  Google Scholar 

  17. Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta 1758(9):1436–1449

    Article  PubMed  CAS  Google Scholar 

  18. Andreu D, Ubach J, Boman A, Wahlin B, Wade D, Merrifield RB, Boman HG (1992) Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. FEBS Lett 296(2):190–194

    Article  PubMed  CAS  Google Scholar 

  19. Boman HC, Boman IA, Andreu D, Li ZQ, Merrifield RB, Schlenstedt G, Zimmermann R (1989) Chemical synthesis and enzymic processing of precursor forms of cecropins A and B. J Biol Chem 264(10):5852–5860

    PubMed  CAS  Google Scholar 

  20. Cavallarin L, Andreu D, San Segundo B (1998) Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol Plant Microbe Interact 11(3):218–227

    Article  PubMed  CAS  Google Scholar 

  21. Chicharro C, Granata C, Lozano R, Andreu D, Rivas L (2001) N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1–7)M(2–9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother 45(9):2441–2449

    Article  PubMed  CAS  Google Scholar 

  22. Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE (1999) Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother 43(7):1542–1548

    PubMed  CAS  Google Scholar 

  23. Rodriguez-Hernandez MJ, Saugar J, Docobo-Perez F, de la Torre BG, Pachon-Ibanez ME, Garcia-Curiel A, Fernandez-Cuenca F, Andreu D, Rivas L, Pachon J (2006) Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother 58(1):95–100

    Article  PubMed  CAS  Google Scholar 

  24. Saugar JM, Rodriguez-Hernandez MJ, de la Torre BG, Pachon-Ibanez ME, Fernandez-Reyes M, Andreu D, Pachon J, Rivas L (2006) Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother 50(4):1251–1256

    Article  PubMed  CAS  Google Scholar 

  25. C57BL/6 Datasheet. Harland. http://www.harlan.com/research_models_and_services/research_models_by_product_type/inbred_mice/c57bl6j_inbred_mice.hl. Accessed 13 December 2010.

  26. BALBc Datasheet. Harland. http://www.harlan.com/research_models_and_services/research_models_by_product_type/inbred_mice/balbc.hl. Accessed 13 December 2010.

  27. Solanas C, de la Torre BG, Fernandez-Reyes M, Santiveri CM, Jimenez MA, Rivas L, Jimenez AI, Andreu D, Cativiela C (2009) Therapeutic index of gramicidin S is strongly modulated by D-phenylalanine analogues at the beta-turn. J Med Chem 52(3):664–674

    Article  PubMed  CAS  Google Scholar 

  28. O’Reilly T, Cleeland R, Squires EL (1996) Evaluation of antimicrobials in experimental animal infections. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams and Wilkins, MD, USA, pp 604–765

    Google Scholar 

  29. Pachon J, Vila J (2009) Treatment of multiresistant Acinetobacter baumannii infections. Curr Opin Investig Drugs 10(2):150–156

    PubMed  CAS  Google Scholar 

  30. Pereira HA (2006) Novel therapies based on cationic antimicrobial peptides. Curr Pharm Biotechnol 7(4):229–234

    Article  PubMed  CAS  Google Scholar 

  31. Zhang L, Falla TJ (2006) Antimicrobial peptides: therapeutic potential. Expert Opin Pharmacother 7(6):653–663

    Article  PubMed  CAS  Google Scholar 

  32. Braunstein A, Papo N, Shai Y (2004) In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother 48(8):3127–3129

    Article  PubMed  CAS  Google Scholar 

  33. Giacometti A, Cirioni O, Kamysz W, D'Amato G, Silvestri C, Del Prete MS, Lukasiak J, Scalise G (2003) Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1–7)M(2–9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides 24(9):1315–1318

    Article  PubMed  CAS  Google Scholar 

  34. Saugar JM, Alarcon T, Lopez-Hernandez S, Lopez-Brea M, Andreu D, Rivas L (2002) Activities of polymyxin B and cecropin A-, melittin peptide CA(1–8)M(1–18) against a multiresistant strain of Acinetobacter baumannii. Antimicrob Agents Chemother 46(3):875–878

    Article  PubMed  CAS  Google Scholar 

  35. Avrahami D, Shai Y (2003) Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D, L-amino acid-containing antimicrobial peptides: a plausible mode of action. Biochemistry 42(50):14946–14956

    Article  PubMed  CAS  Google Scholar 

  36. Gough M, Hancock RE, Kelly NM (1996) Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun 64(12):4922–4927

    PubMed  CAS  Google Scholar 

  37. Zhang L, Falla T, Wu M, Fidai S, Burian J, Kay W, Hancock RE (1998) Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. Biochem Biophys Res Commun 247(3):674–680

    Article  PubMed  CAS  Google Scholar 

  38. Seebach D, Beck AK, Bierbaum DJ (2004) The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Chem Biodivers 1(8):1111–1239

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L, Benz R, Hancock RE (1999) Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Biochemistry 38(25):8102–8111

    Article  PubMed  CAS  Google Scholar 

  40. Piers KL, Brown MH, Hancock RE (1994) Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification. Antimicrob Agents Chemother 38(10):2311–2316

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Spanish Ministry of Science and Innovation (grant PET2006-0139 to D.A. and L.R.), and by the Spanish Ministry of Health (Fondo de Investigaciones Sanitarias-FEDER, grants PI061125 and PI040827 to L.R., PI040885 to D.A., PI041854 to J.A.B. and PI040624 to J.P.) Additional funding from the regional governments of Madrid (S-BIO-0260/2006 to L.R.) and Catalonia (SGR2005-00494 to D.A.) is acknowledged. L.R. belongs to the COMBACT Network (BIO260) (Comunidad Autónoma de Madrid). J.P. belongs to the Spanish Network for Research in Infectious Diseases (REIPI RD06/0008), the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III-FEDER. CIBERES is an initiative from Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. López-Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Rojas, R., Docobo-Pérez, F., Pachón-Ibáñez, M.E. et al. Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii . Eur J Clin Microbiol Infect Dis 30, 1391–1398 (2011). https://doi.org/10.1007/s10096-011-1233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1233-y

Keywords

Navigation