Skip to main content
Log in

Cortical changes in the brain of patients with hemifacial spasm

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

Hemifacial spasm (HFS) is a movement disorder characterized by involuntary muscle contractions on one side of the face. It is associated with disturbances in the brain’s functional architecture. Despite this, the structural alterations in the brain related to HFS remain poorly understood. In this study, we investigated the cortical morphology changes in patients with HFS compared to healthy controls (HCs).

Methods

We analyzed 3D T1-weighted MRI images from 33 patients with left-sided primary HFS and 33 age- and sex-matched HCs. Measurements of cortical thickness (CTh), sulcal depth, local gyrification index (lGI), and fractal dimension were taken using a computational anatomy toolbox. A general linear model, accounting for age, gender, and total brain volume, was applied for statistical analyses. Significant clusters were then assessed for correlations with clinical parameters.

Results

The HFS patients displayed several cortical abnormalities when compared to HCs, including reduced CTh in the contralateral precentral gyrus and left orbitofrontal cortex, decreased sulcal depth in the left orbitofrontal cortex, and increased lGI in the right insula and superior temporal cortex. However, fractal dimension did not differ significantly between the groups. Additionally, in HFS patients, a notable negative correlation was found between the sulcal depth in the left orbitofrontal cortex and the Beck Depression Inventory-II scores.

Conclusions

Our findings reveal that HFS is associated with specific surface-based morphological changes in the brain. These alterations contribute to a deeper understanding of the neurophysiological mechanisms involved in HFS and may have implications for future research and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available upon reasonable requests of collaboration.

Code availability

None.

References

  1. Jannetta PJ (1998) Typical or atypical hemifacial spasm. J Neurosurg 89:346–347

    PubMed  CAS  Google Scholar 

  2. Jo KW, Kong DS, Park K (2013) Microvascular decompression for hemifacial spasm: long-term outcome and prognostic factors, with emphasis on delayed cure. Neurosurg Rev 36:297–301 (discussion 301–292)

    Article  PubMed  Google Scholar 

  3. Tan EK, Chan LL (2006) Young onset hemifacial spasm. Acta Neurol Scand 114:59–62

    Article  PubMed  CAS  Google Scholar 

  4. McLaughlin MR, Jannetta PJ, Clyde BL, Subach BR, Comey CH, Resnick DK (1999) Microvascular decompression of cranial nerves: lessons learned after 4400 operations. J Neurosurg 90:1–8

    Article  PubMed  CAS  Google Scholar 

  5. Gardner WJ (1962) Concerning the mechanism of trigeminal neuralgia and hemifacial spasm. J Neurosurg 19:947–958

    Article  PubMed  CAS  Google Scholar 

  6. Miller LE, Miller VM (2012) Safety and effectiveness of microvascular decompression for treatment of hemifacial spasm: a systematic review. Br J Neurosurg 26:438–444

    Article  PubMed  Google Scholar 

  7. Eksantivongs S, Poungvarin N, Viriyavejakul A, Punyamee J (1994) Hemifacial spasm: an electrophysiological evidence of facial motorneurons hyperexcitability. J Med Assoc Thai 77:627–632

    PubMed  CAS  Google Scholar 

  8. Barker FG 2nd, Jannetta PJ, Bissonette DJ, Shields PT, Larkins MV, Jho HD (1995) Microvascular decompression for hemifacial spasm. J Neurosurg 82:201–210

    Article  PubMed  Google Scholar 

  9. Kakizawa Y, Seguchi T, Kodama K, Ogiwara T, Sasaki T, Goto T, Hongo K (2008) Anatomical study of the trigeminal and facial cranial nerves with the aid of 3.0-tesla magnetic resonance imaging. J Neurosurg 108:483–490

    Article  PubMed  Google Scholar 

  10. Wang A, Jankovic J (1998) Hemifacial spasm: clinical findings and treatment. Muscle Nerve 21:1740–1747

    Article  PubMed  CAS  Google Scholar 

  11. Bao F, Wang Y, Liu J, Mao C, Ma S, Guo C, Ding H, Zhang M (2015) Structural changes in the CNS of patients with hemifacial spasm. Neuroscience 289:56–62

    Article  PubMed  CAS  Google Scholar 

  12. Guo Y, Peng K, Liu Y, Zhong L, Dang C, Yan Z, Wang Y, Zeng J, Zhang W, Ou Z, Liu G (2021) Topological alterations in white matter structural networks in blepharospasm. Mov Disord 36:2802–2810

    Article  PubMed  Google Scholar 

  13. Tu Y, Yu T, Wei Y, Sun K, Zhao W, Yu B (2016) Structural brain alterations in hemifacial spasm: a voxel-based morphometry and diffusion tensor imaging study. Clin Neurophysiol 127:1470–1474

    Article  PubMed  Google Scholar 

  14. Peelle JE, Cusack R, Henson RN (2012) Adjusting for global effects in voxel-based morphometry: gray matter decline in normal aging. Neuroimage 60:1503–1516

    Article  PubMed  Google Scholar 

  15. Henley SM, Ridgway GR, Scahill RI, Kloppel S, Tabrizi SJ, Fox NC, Kassubek J (2010) Group EIW Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease. AJNR Am J Neuroradiol 31:711–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, Webster P, Smith S (2008) Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. Neuroimage 43:665–675

    Article  PubMed  Google Scholar 

  17. Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48:371–380

    Article  PubMed  Google Scholar 

  18. Palaniyappan L, Liddle PF (2012) Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. Neuroimage 60:693–699

    Article  PubMed  Google Scholar 

  19. Luders E, Thompson PM, Narr KL, Toga AW, Jancke L, Gaser C (2006) A curvature-based approach to estimate local gyrification on the cortical surface. Neuroimage 29:1224–1230

    Article  PubMed  CAS  Google Scholar 

  20. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cereb Cortex 5:56–63

    Article  PubMed  CAS  Google Scholar 

  21. Im K, Lee JM, Yoon U, Shin YW, Hong SB, Kim IY, Kwon JS, Kim SI (2006) Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Hum Brain Mapp 27:994–1003

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mitchell T, Lehericy S, Chiu SY, Strafella AP, Stoessl AJ, Vaillancourt DE (2021) Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol 78:1262–1272

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sampedro F, Martinez-Horta S, Perez-Perez J, Horta-Barba A, Lopez-Mora DA, Camacho V, Fernandez-Leon A, Gomez-Anson B, Carrio I, Kulisevsky J (2019) Cortical atrophic-hypometabolic dissociation in the transition from premanifest to early-stage Huntington’s disease. Eur J Nucl Med Mol Imaging 46:1111–1116

    Article  PubMed  CAS  Google Scholar 

  24. Tomic A, Agosta F, Sarasso E, Svetel M, Kresojevic N, Fontana A, Canu E, Petrovic I, Kostic VS, Filippi M (2021) Brain structural changes in focal dystonia-what about task specificity? A multimodal MRI study. Mov Disord 36:196–205

    Article  PubMed  Google Scholar 

  25. Pietracupa S, Bologna M, Bharti K, Pasqua G, Tommasin S, Elifani F, Paparella G, Petsas N, Grillea G, Berardelli A, Pantano P (2019) White matter rather than gray matter damage characterizes essential tremor. Eur Radiol 29:6634–6642

    Article  PubMed  Google Scholar 

  26. Xu H, Guo C, Li H, Gao L, Zhang M, Wang Y (2019) Structural and functional amygdala abnormalities in hemifacial spasm. Front Neurol 10:393

    Article  PubMed  PubMed Central  Google Scholar 

  27. Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS, Hallett M, Jankovic J, Jinnah HA, Klein C, Lang AE, Mink JW, Teller JK (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28:863–873

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jankovic J, Kenney C, Grafe S, Goertelmeyer R, Comes G (2009) Relationship between various clinical outcome assessments in patients with blepharospasm. Mov Disord 24:407–413

    Article  PubMed  Google Scholar 

  29. Yotter RA, Nenadic I, Ziegler G, Thompson PM, Gaser C (2011) Local cortical surface complexity maps from spherical harmonic reconstructions. Neuroimage 56:961–973

    Article  PubMed  Google Scholar 

  30. Lerner A, Bagic A, Hanakawa T, Boudreau EA, Pagan F, Mari Z, Bara-Jimenez W, Aksu M, Sato S, Murphy DL, Hallett M (2009) Involvement of insula and cingulate cortices in control and suppression of natural urges. Cereb Cortex 19:218–223

    Article  PubMed  Google Scholar 

  31. Morecraft RJ, Stilwell-Morecraft KS, Rossing WR (2004) The motor cortex and facial expression: new insights from neuroscience. Neurologist 10:235–249

    Article  PubMed  Google Scholar 

  32. Cattaneo L, Pavesi G (2014) The facial motor system. Neurosci Biobehav Rev 38:135–159

    Article  PubMed  Google Scholar 

  33. Chung JY, Yoon HW, Song MS, Park H (2006) Event related fMRI studies of voluntary and inhibited eye blinking using a time marker of EOG. Neurosci Lett 395:196–200

    Article  PubMed  CAS  Google Scholar 

  34. Setthawatcharawanich S, Sathirapanya P, Limapichat K, Phabphal K (2011) Factors associated with quality of life in hemifacial spasm and blepharospasm during long-term treatment with botulinum toxin. Qual Life Res 20:1519–1523

    Article  PubMed  Google Scholar 

  35. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation–a possible prelude to violence. Science 289:591–594

    Article  PubMed  CAS  Google Scholar 

  36. Rolls ET (2021) The neuroscience of emotional disorders. Handb Clin Neurol 183:1–26

    Article  PubMed  Google Scholar 

  37. Drevets WC (2007) Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci 1121:499–527

    Article  PubMed  Google Scholar 

  38. Berman BD, Horovitz SG, Morel B, Hallett M (2012) Neural correlates of blink suppression and the buildup of a natural bodily urge. Neuroimage 59:1441–1450

    Article  PubMed  Google Scholar 

  39. Rousseau C, Fautrelle L, Papaxanthis C, Fadiga L, Pozzo T, White O (2016) Direction-dependent activation of the insular cortex during vertical and horizontal hand movements. Neuroscience 325:10–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the participants in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Tu.

Ethics declarations

Ethical approval

This research was approved by the Ethics Committee of Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

Consent to participate

Informed consent was obtained from all participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiong, F., Gao, F. et al. Cortical changes in the brain of patients with hemifacial spasm. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07353-7

Keywords

Navigation