Skip to main content
Log in

Deep brain stimulation of the subthalamic nucleus to improve symptoms and cognitive functions in patients with refractory obsessive–compulsive disorder: a longitudinal study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

There are conflicting results regarding the effect of deep brain stimulation (DBS) of different regions on the cognitive functions of patients with severe refractory obsessive–compulsive disorder (OCD). Moreover, it is not yet clear whether the rate of improvement in obsession-compulsion symptoms and cognitive functions following DBS is interrelated. We investigated the effect of the subthalamic nucleus (STN)-DBS on both the severity of symptoms and cognitive functions of patients and also investigated the possible interrelationship between the two. Twelve patients (10 males and two females; 56.17 ± 4.52 years old) were assessed before and 1 month and 3 months after the DBS surgery using the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS), the N-Back, the selective and divided attention (SDA), the Tower of London (TOL), and the Wisconsin Card Sorting (WCS) tests. We found that the severity of symptoms and cognitive functions improved significantly after DBS and this effect lasted at least up to 3 months. Furthermore, it was revealed that the severity of symptoms and cognitive profiles of patients were significantly correlated. Compulsion severity had the highest correlation with perseveration errors, while obsession severity was most correlated with the number of n-back errors. Based on our findings, it seems that the STN acts at least to some extent as a common functional/anatomical ground for the severity of symptoms and cognitive functions of patients with severe refractory OCD, and it can probably be considered as the region of interest for DBS in this group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Woody EZ, Hoffman KL, Szechtman H (2019) Chapter Eight - Obsessive compulsive disorder (OCD): current treatments and a framework for neurotherapeutic research. In: Witkin JM, ed. eds. Advances in Pharmacology: Academic Press 86:237–271

  2. Mataix-Cols D, Nakatani E, Micali N, Heyman I (2008) Structure of obsessive-compulsive symptoms in pediatric OCD. J Am Acad Child Adolesc Psychiatry 47(7):773–778

    Article  PubMed  Google Scholar 

  3. Anholt GE, Aderka IM, van Balkom AJ, Smit JH, Schruers K, van der Wee NJ, Eikelenboom M, De Luca V, van Oppen P (2014) Age of onset in obsessive-compulsive disorder: admixture analysis with a large sample. Psychol Med 44(1):185–194

    Article  CAS  PubMed  Google Scholar 

  4. Fawcett EJ, Power H, Fawcett JM. (2020) Women are at greater risk of OCD than men: a meta-analytic review of OCD prevalence worldwide. The J of Clin Psychiat 81(4):0–0

  5. Weissman MM, Bland RC, Canino GJ, Greenwald S, Hwu HG, Lee CK, Newman SC, Oakley-Browne MA, Rubio-Stipec M, Wickramaratne PJ. (1994) The cross national epidemiology of obsessive compulsive disorder. The Cross National Collaborative Group. The J Clin Psychiat 55 Suppl:5–10

  6. Becker JP, Paixão R, Silva S, Quartilho MJ, Custódio EM (2019) Dynamic psychotherapy: the therapeutic process in the treatment of obsessive-compulsive disorder. Behav Sci (Basel) 9(12):141

    Article  PubMed  Google Scholar 

  7. Pittenger C, Kelmendi B, Bloch M, Krystal JH, Coric V (2005) Clinical treatment of obsessive compulsive disorder. Psychiatry (Edgmont) 2(11):34–43

    PubMed  Google Scholar 

  8. Liu X, Cui H, Wei Q, Wang Y, Wang K, Wang C, Zhu C, Xie X (2014) Electroconvulsive therapy on severe obsessive-compulsive disorder comorbid depressive symptoms. Psychiatry Investig 11(2):210–213

    Article  PubMed  PubMed Central  Google Scholar 

  9. Montgomery EB Jr, Gale JT (2008) Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev 32(3):388–407

    Article  PubMed  Google Scholar 

  10. Senova S, Clair A-H, Palfi S, Yelnik J, Domenech P, Mallet L. (2019) Deep brain stimulation for refractory obsessive-compulsive disorder: towards an individualized approach. Front Psychiatry 10(905)

  11. Denys D, Graat I, Mocking R, de Koning P, Vulink N, Figee M, Ooms P, Mantione M, van den Munckhof P, Schuurman R (2020) Efficacy of deep brain stimulation of the ventral anterior limb of the internal capsule for refractory obsessive-compulsive disorder: a clinical cohort of 70 patients. Am J Psychiatry 177(3):265–271

    Article  PubMed  Google Scholar 

  12. Mantione M, Nieman D, Figee M, van den Munckhof P, Schuurman R, Denys D (2015) Cognitive effects of deep brain stimulation in patients with obsessive-compulsive disorder. J Psychiatry Neurosci 40(6):378–386

    Article  PubMed  PubMed Central  Google Scholar 

  13. Çetinay Aydın P, Güleç Öyekçin D (2013) [Cognitive functions in patients with obsessive compulsive disorder], Turk psikiyatri dergisi =. Turkish J Psych 24(4):266–74

    Google Scholar 

  14. Shin NY, Lee TY, Kim E, Kwon JS (2014) Cognitive functioning in obsessive-compulsive disorder: a meta-analysis. Psychol Med 44(6):1121–1130

    Article  CAS  PubMed  Google Scholar 

  15. Purcell R, Maruff P, Kyrios M, Pantelis C (1998) Neuropsychological deficits in obsessive-compulsive disorder: a comparison with unipolar depression, panic disorder, and normal controls. Arch Gen Psychiatry 55(5):415–423

    Article  CAS  PubMed  Google Scholar 

  16. Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15(5):200–209

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zamora-López G, Russo E, Gleiser PM, Zhou C, Kurths J (1952) Characterizing the complexity of brain and mind networks. Philosop Transact Royal Soc A: Mathematical, Physical Engineering Sci 2011(369):3730–3747

    Google Scholar 

  18. Vanhille SB Y-BOCS factor structure analysis and calculation of measurement and structural invariance between genders: Brigham Young University. 2019

  19. RajeziEsfahani S, Motaghipour Y, Kamkari K, Zahiredin A, Janbozorgi M (2012) Reliability and validity of the Persian version of the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) %J Iranian. J Psychiat Clin Psychol 17(4):297–303

    Google Scholar 

  20. León-Domínguez U, Martín-Rodríguez JF, León-Carrión J (2015) Executive n-back tasks for the neuropsychological assessment of working memory. Behav Brain Res 292:167–173

    Article  PubMed  Google Scholar 

  21. Halperin JM, Sharma V, Greenblatt E, Schwartz STJPAAJoC, Psychology C. (1991) Assessment of the continuous performance test: reliability and validity in a nonreferred sample 3(4):603

  22. Anderson SW, Damasio H, Jones RD, TranelDJJoc, neuropsychology e. (1991) Wisconsin Card Sorting Test performance as a measure of frontal lobe damage 13(6):909–922

  23. Anderson P, Anderson V, Lajoie G. (1996) The Tower of London test: validation and standardization for pediatric populatons 10(1):54–65

  24. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(1):4–20

    Article  PubMed  Google Scholar 

  25. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318(5854):1309–1312

    Article  CAS  PubMed  Google Scholar 

  26. Mulders AEP, Plantinga BR, Schruers K, Duits A, Janssen MLF, Ackermans L, Leentjens AFG, Jahanshahi A, Temel Y (2016) Deep brain stimulation of the subthalamic nucleus in obsessive-compulsive disorder: neuroanatomical and pathophysiological considerations. Europ Neuropsychopharmacol : theJ Europ College Neuropsychopharmacol 26(12):1909–1919

    Article  CAS  Google Scholar 

  27. Temel Y, Blokland A, Steinbusch HWM, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76(6):393–413

    Article  CAS  PubMed  Google Scholar 

  28. Mallet L, Polosan M, Jaafari N, Baup N, Welter M-L, Fontaine D, Montcel STd, Yelnik J, Chéreau I, Arbus C, Raoul S, Aouizerate B, Damier P, Chabardès S, Czernecki V, Ardouin C, Krebs M-O, Bardinet E, Chaynes P, Burbaud P, Cornu P, Derost P, Bougerol T, Bataille B, Mattei V, Dormont D, Devaux B, Vérin M, Houeto J-L, Pollak P, Benabid A-L, Agid Y, Krack P, Millet B, Pelissolo A (2008) Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N Engl J Med 359(20):2121–2134

    Article  CAS  PubMed  Google Scholar 

  29. Polosan M, Droux F, Kibleur A, Chabardes S, Bougerol T, David O, Krack P, Voon V (2019) Affective modulation of the associative-limbic subthalamic nucleus: deep brain stimulation in obsessive–compulsive disorder. Transl Psychiatry 9(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chabardes S, Krack P, Piallat B, Bougerol T, Seigneuret E, Yelnik J, Fernandez Vidal S, David O, Mallet L, Benabid A-L, Polosan M (2020) Deep brain stimulation of the subthalamic nucleus in obsessive–compulsives disorders: long-term follow-up of an open, prospective, observational cohort, Journal of Neurology. Neurosurgery & Psychiatry 91(12):1349

    Article  Google Scholar 

  31. Widge AS, Zorowitz S, Basu I, Paulk AC, Cash SS, Eskandar EN, Deckersbach T, Miller EK, Dougherty DD (2019) Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat Commun 10(1):1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giele CL, van den Hout MA, Engelhard IM, Dek ECP, Toffolo MBJ, Cath DC (2016) Perseveration induces dissociative uncertainty in obsessive-compulsive disorder. J Behavior Therapy Experiment Psychiat 52:1–10

    Article  Google Scholar 

  33. Brewin CR, Smart L (2005) Working memory capacity and suppression of intrusive thoughts. J Behav Ther Exp Psychiatry 36(1):61–68

    Article  PubMed  Google Scholar 

  34. Geraerts E, Merckelbach H, Jelicic M, Habets P (2007) Suppression of intrusive thoughts and working memory capacity in repressive coping. Am J Psychol 120(2):205–218

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Tao Huang.

Ethics declarations

Ethical approval

The protocol was approved by the Local Ethics Committee, with patient consent waived given to the retrospective anonymous collection of data, according to Iranian regulations.

Consent to participate

The participant has consented to the participation of this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Huang, T. & Dana, A. Deep brain stimulation of the subthalamic nucleus to improve symptoms and cognitive functions in patients with refractory obsessive–compulsive disorder: a longitudinal study. Neurol Sci 44, 2385–2392 (2023). https://doi.org/10.1007/s10072-023-06614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06614-1

Keywords

Navigation