Skip to main content

Advertisement

Log in

Serum inflammation markers associated with altered brain white matter microstructure in people with HIV on antiretroviral treatment

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Many studies have reported reduced brain white matter fractional anisotropy (FA) and increased mean diffusivity (MD) on diffusion tensor imaging (DTI) of people with HIV (PWH). Few, however, have linked individual blood inflammatory markers with white matter tract-specific FA and MD.

Methods

PWH 50 years old or older from New York, NY, USA, were invited to a cross-sectional study. Demographic data, blood samples, and brain DTI were obtained. Least absolute shrinkage and selection operator (LASSO) regression was used to examine associations between biomarkers and white matter tract-specific FA and MD. All models included age, sex, race, ethnicity, diabetes, hypertension, smoking, and viral load as control variables.

Results

Seventy-two cases were analyzed. Mean age was 60 ± 6 years, 47% were women, 21% were Hispanic, and 78% were black. All had asymptomatic HIV infection and were on antiretroviral therapy. Eighty-nine percent had CD4 count >200 cell/mm3 and 78% were virally suppressed. Vascular endothelial growth factor (VEGF) and macrophage inflammatory proteins (MIP) 1β and 1α were consistently associated with lower FA and higher MD across white matter tracts.

Conclusions

Elevated serum VEGF, MIP-1α, and MIP-1β were associated with altered white matter microstructure. These blood biomarkers may help predict HIV-associated white matter damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marcus JL, Leyden WA, Alexeeff SE et al (2020) Comparison of overall and comorbidity-free life expectancy between insured adults with and without HIV infection, 2000–2016. JAMA Netw Open 3:e207954-e

    Article  Google Scholar 

  2. Sacktor N (2018) Changing clinical phenotypes of HIV-associated neurocognitive disorders. J Neurovirol 24:141–5

    Article  CAS  PubMed  Google Scholar 

  3. Saloner R, Cysique LA (2017) HIV-associated neurocognitive disorders: a global perspective. J Int Neuropsychol Soc 23:860–9

    Article  PubMed  PubMed Central  Google Scholar 

  4. Grieve SM, Williams LM, Paul RH, Clark CR, Gordon E (2007) Cognitive aging, executive function, and fractional anisotropy: a diffusion tensor MR imaging study. AJNR Am J Neuroradiol 28:226–35

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rose SE, McMahon KL, Janke AL et al (2006) Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. J Neurol Neurosurg Psychiatry 77:1122–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stebbins GT, Smith CA, Bartt RE et al (2007) HIV-associated alterations in normal-appearing white matter: a voxel-wise diffusion tensor imaging study. J Acquir Immune Defic Syndr 46:564–73

    Article  PubMed  Google Scholar 

  7. Wright P, Heaps J, Shimony JS, Thomas JB, Ances BMJA (2012) The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS 26:1501

    Article  CAS  PubMed  Google Scholar 

  8. Gongvatana A, Cohen RA, Correia S et al (2011) Clinical contributors to cerebral white matter integrity in HIV-infected individuals. J Neurovirol 17:477

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raja F, Sherriff F, Morris C, Bridges L, Esiri MM (1997) Cerebral white matter damage in HIV infection demonstrated using β-amyloid precursor protein immunoreactivity. Acta Neuropathol 93:184–9

    Article  CAS  PubMed  Google Scholar 

  10. McWhinney SR, Tremblay A, Chevalier TM, Lim VK, Newman AJ (2016) Using CForest to analyze diffusion tensor imaging data: a study of white matter integrity in healthy aging. Brain Connect 6:747–58

    Article  PubMed  Google Scholar 

  11. Sexton CE, Walhovd KB, Storsve AB et al (2014) Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci 34:15425–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang K, Premeaux TA, Cobigo Y et al (2020) Plasma inflammatory biomarkers link to diffusion tensor imaging metrics in virally suppressed HIV-infected individuals. AIDS 34:203

    Article  PubMed  Google Scholar 

  13. Cohen RA, de la Monte S, Gongvatana A et al (2011) Plasma cytokine concentrations associated with HIV/hepatitis C coinfection are related to attention, executive and psychomotor functioning. J Neuroimmunol 233:204–10

    Article  CAS  PubMed  Google Scholar 

  14. Falasca K, Reale M, Ucciferri C et al (2017) Cytokines, hepatic fibrosis, and antiretroviral therapy role in neurocognitive disorders HIV related. AIDS Res Hum Retroviruses 33:246–253

    Article  CAS  PubMed  Google Scholar 

  15. Buchhave P, Zetterberg H, Blennow K, Minthon L, Janciauskiene S, Hansson O (2010) Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol Aging 31:1877–1884

    Article  CAS  PubMed  Google Scholar 

  16. Yuan L, Liu A, Qiao L et al (2015) The relationship of CSF and plasma cytokine levels in HIV infected patients with neurocognitive impairment. BioMed research Int 2015:1–5

    CAS  Google Scholar 

  17. Gutierrez J, Porras TN, Yoo-Jeong M et al (2021) Cerebrovascular contributions to neurocognitive disorders in people living With HIV. J Acquir Immune Defic Syndr 88:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katzman R, Brown T, Fuld P, Peck A, Schechter R, Schimmel H (1983) Validation of a short orientation-memory-concentration test of cognitive impairment. Am J Psychiatry 140(6):734–739

    Article  CAS  PubMed  Google Scholar 

  19. Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal 58:267–88

    Google Scholar 

  20. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining, inference, and prediction, vol 2. Springer, New York, pp 1–758

  21. Corrêa DG, Zimmermann N, Doring TM et al (2015) Diffusion tensor MR imaging of white matter integrity in HIV-positive patients with planning deficit. Neuroradiology 57:475–82

    Article  PubMed  Google Scholar 

  22. Zhu T, Zhong J, Hu R et al (2013) Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirol 19:10–23

    Article  PubMed  Google Scholar 

  23. Ascherl G, Hohenadl C, Schatz O et al (1999) Infection with human immunodeficiency virus-1 increases expression of vascular endothelial cell growth factor in T cells: implications for acquired immunodeficiency syndrome-associated vasculopathy. Blood 93:4232–41

    Article  CAS  PubMed  Google Scholar 

  24. Heidenreich F, Arendt G, Jander S, Jablonowski H, Stoll G (1994) Serum and cerebrospinal fluid levels of soluble intercellular adhesion molecule 1 (sICAM-1) in patients with HIV-1 associated neurological diseases. Journal of Neuroimmunology 52:117–26

    Article  CAS  PubMed  Google Scholar 

  25. Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38(5):755–762

    Article  CAS  PubMed  Google Scholar 

  26. Sporer B, Koedel U, Paul R et al (2004) Vascular endothelial growth factor (VEGF) is increased in serum, but not in cerebrospinal fluid in HIV associated CNS diseases. Journal of Neurology 75:298–300

    CAS  Google Scholar 

  27. Cocchi F, DeVico AL, Yarchoan R et al (2000) Higher macrophage inflammatory protein (MIP)-1α and MIP-1β levels from CD8+ T cells are associated with asymptomatic HIV-1 infection. Proc Natl Acad Sci U S A 97:13812–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levine AJ, Soontornniyomkij V, Achim CL et al (2016) Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neurovirol 22:431–41

    Article  CAS  PubMed  Google Scholar 

  29. Wagner L, Yang OO, Garcia-Zepeda EA et al (1998) β-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391:908–11

    Article  CAS  PubMed  Google Scholar 

  30. Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KCJA (2013) Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS 27(9):1387–1395

    Article  CAS  PubMed  Google Scholar 

  31. Imp BM, Rubin LH, Tien PC et al (2017) Monocyte activation is associated with worse cognitive performance in HIV-infected women with virologic suppression. J Infect Dis 215:114

    Article  CAS  PubMed  Google Scholar 

  32. Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 310:173–186

    Article  CAS  PubMed  Google Scholar 

  33. Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21:79–96

    CAS  PubMed  Google Scholar 

  34. Reiber H, Padilla-Docal B, Jensenius JC, Dorta-Contreras AJ (2012) Mannan-binding lectin in cerebrospinal fluid: a leptomeningeal protein. Fluids and Barriers of the CNS 9:1–7

    Article  Google Scholar 

  35. de Almeida SM, Rotta I, Ribeiro CE et al (2016) Blood-CSF barrier and compartmentalization of CNS cellular immune response in HIV infection. J Neuroimmunol 301:41–48

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kothur K, Wienholt L, Brilot F, Dale RCJC (2016) CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: a systematic review. Cytokine 77:227–37

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Gutierrez.

Ethics declarations

Ethical approval

None.

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spagnolo-Allende, A., Schnall, R., Liu, M. et al. Serum inflammation markers associated with altered brain white matter microstructure in people with HIV on antiretroviral treatment. Neurol Sci 44, 2159–2166 (2023). https://doi.org/10.1007/s10072-023-06613-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06613-2

Keywords

Navigation