Skip to main content
Log in

Changes in corticomotor pathway excitability after exercise training in Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Altered corticospinal excitability in Parkinson’s disease (PD) is related to many of the motor signs.

Objective

We examined whether the recruitment properties of the corticospinal pathway to hand muscles are changed after 8 weeks of specialized upper limbs exercise in PD.

Methods

Seven PD subjects were enrolled. Upper limb exercise was achieved by using a specially designed device. The input–output (I–O) curves were obtained by transcranial magnetic stimulation (TMS). The conduction of peripheral axons and H reflex was also recorded. UPDRS scale, part-III motor examination was used to assess the motor symptom. Clinical and neurophysiological data were obtained before and after 2-month exercise training.

Results

After 2-month exercise training, the UPDRS score was significantly improved. Threshold, slope, and V50 (i.e., the stimulus intensity required to obtain a response 50% of the maximum) of the I–O curve were unchanged, whereas the plateau value was significantly higher.

Conclusions

Exercise training affects the larger motoneurons, that is those activated at higher TMS stimulation intensity. These motoneurones are related to the large, type II motor units. Clinical improvement after exercise may depend upon restoration of the recruitment of the large motor unit, i.e., those necessary to perform rapid and strong movements, known to be deficient in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  2. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences 13:281–285

    Article  CAS  PubMed  Google Scholar 

  3. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    Article  CAS  PubMed  Google Scholar 

  4. Wichmann T, DeLong MR (2003) Functional neuroanatomy of the basal ganglia in Parkinson's disease. Adv Neurol 91:9–18

    PubMed  Google Scholar 

  5. Parr-Brownlie LC, Hyland BI (2005) Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat. J Neurosci 25:5700–5709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pasquereau B, Turner RS (2011) Primary motor cortex of the parkinsonian monkey: differential effects on the spontaneous activity of pyramidal tract-type neurons. Cereb Cortex 21:1362–1378

    Article  PubMed  Google Scholar 

  7. Cantello R, Tarletti R, Civardi C (2002) Transcranial magnetic stimulation and Parkinson’s disease. Brain Res Rev 38:309–327

    Article  PubMed  Google Scholar 

  8. Leon-Sarmiento FE, Rizzo-Sierra CV, Bayona EA, Bayona-Prieto J, Doty RL, Bara-Jimenez W (2013) Novel mechanisms underlying inhibitory and facilitatory transcranial magnetic stimulation abnormalities in Parkinson's disease. Arch Med Res 44:221–228

    Article  PubMed  Google Scholar 

  9. Tomlinson CL, Patel S, Meek C, Herd CP, Clarke CE, Stowe R, Shah L, Sackley C, Deane KH, Wheatley K, Ives N (2012) Physiotherapy intervention in Parkinson's disease: systematic review and meta-analysis. BMJ 345:e5004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Messa LV, Ginanneschi F, Momi D, Monti L, Battisti C, Cioncoloni D, Pucci B, Santarnecchi E, Rossi A (2019) Functional and brain activation changes following specialized upper-limb exercise in Parkinson’s disease. Front Hum Neurosci 13:350

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W (1998) Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J Physiol 511:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cavaleri R, Schabrun SM, Chipchase LS (2017) The number of stimuli required to reliably assess corticomotor excitability and primary motor cortical representations using transcranial magnetic stimulation (TMS): a systematic review and meta-analysis. Syst Rev 6:48

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ginanneschi F, Mondelli M, Dominici F, Rossi A (2006) Changes in motor axon recruitment in the median nerve in mild carpal tunnel syndrome. Clin Neurophysiol 117:2467–2472

    Article  CAS  PubMed  Google Scholar 

  14. Messa LV, Biffi A, Fernando F, Ginanneschi F, Rossi A (2016) Tailored exercise with an innovative mechanical device: effects on cervical-dorsal rachis. J Funct Morphol Kinesiol 1:183–189

    Article  Google Scholar 

  15. Alberts JL, Phillips M, Lowe MJ, Frankemolle A, Thota A, Beall EB, Feldman M, Ahmed A, Ridgel AL (2016) Cortical and motor responses to acute forced exercise in Parkinsons disease. Parkinsonism Relat Disord 24:56–62

    Article  PubMed  PubMed Central  Google Scholar 

  16. Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  CAS  PubMed  Google Scholar 

  17. Capaday C (1997) Neurophysiological methods for studies of the motor system in freely moving human subjects. J Neurosci Methods 74:201–218

    Article  CAS  PubMed  Google Scholar 

  18. Carroll TJ, Riek S, Carson RG (2001) Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202

    Article  CAS  PubMed  Google Scholar 

  19. Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    Article  CAS  PubMed  Google Scholar 

  20. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol 540:623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burciu RG, Vaillancourt DE (2018) Imaging of motor cortex physiology in Parkinson’s disease. MovDisord 33:1688–1699

    Google Scholar 

  22. Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124:2131–2146

    Article  CAS  PubMed  Google Scholar 

  23. Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P (2011) Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. Neuroimage 55:204–215

    Article  PubMed  Google Scholar 

  24. Bologna M, Paparella G, Fasano A, Hallett M, Berardelli A (2020) Evolving concepts on bradykinesia. Brain 143:727–750

    Article  PubMed  Google Scholar 

  25. Bologna M, Guerra A, Paparella G, Giordo L, Alunni Fegatelli D, Vestri AR, Rothwell JC, Berardelli A (2018) Neurophysiological correlates of bradykinesia in Parkinson’s disease. Brain 141:2432–2444

    Article  PubMed  Google Scholar 

  26. Kojovic M, Bologna M, Kassavetis P, Murase N, Palomar FJ, Berardelli A, Rothwell JC, Edwards MJ, Bhatia KP (2010) Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology 78:1441–1448

    Article  Google Scholar 

  27. Kimiskidis VK, Papayiannopoulos S, Sotirakoglou K, Karakasis H, Katsarou Z, Kazis DA, Papaliagkas V, Gatzonis S, Papadimitriou A, Hadjigeorgiou G, Bostanjopoulou S (2018) The cortical excitability profile of patients with the G209A SNCA mutation versus patients with sporadic Parkinson’s disease: a transcranial magnetic stimulation study. Neurophysiol Clin 48:203–206

    Article  PubMed  Google Scholar 

  28. Kačar A, Filipović SR, Kresojević N, Milanović SD, Ljubisavljević L, Kostić SV, Rothwell JC (2013) History ofexposure to dopaminergic medication does not affect motor cortex plasticity and excitability in Parkinson’s disease. Clin Neurophysiol 124:697–707

    Article  PubMed  CAS  Google Scholar 

  29. Wickens J, Hyland B, Anson G (1994) Cortical cell assemblies: a possible mechanism for motor programs. J Mot Behav 26:66–82

    Article  CAS  PubMed  Google Scholar 

  30. Poliakov AV, Miles TS (1992) Quantitative analysis of reflex responses in the averaged surface electromyogram. J Neurosci Methods 43:195–200

    Article  CAS  PubMed  Google Scholar 

  31. Magistris MR, Rosler KM, Truffert A, Myers JP (1998) Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 121:437–450

    Article  PubMed  Google Scholar 

  32. Paparella G, Rocchi L, Bologna M, Berardelli A, Rothwell J (2020) Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans. J Physiol 598:4031–4045

    Article  CAS  PubMed  Google Scholar 

  33. Berghuis KMM, Semmler JG, Opie GM, Post AK, Hortobágyi T (2017) Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: a systematic review and meta-analysis. Neurobiol Aging 55:61–71

    Article  PubMed  Google Scholar 

  34. Edström L (1970) Selective changes in the sizes of red and white muscle fibres in upper motor lesions and Parkinsonism. J Neurol Sci 11:537–550

    Article  PubMed  Google Scholar 

  35. Rossi B, Siciliano G, Carboncini MC, Manca ML, Massetani R, Viacava P, Muratorio A (1996) Muscle modifications in Parkinson'sdisease: myoelectric manifestations. Electroencephalogr Clin Neurophysiol 101:211–218

    Article  CAS  PubMed  Google Scholar 

  36. Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, Shill HA, Caviness JN, Samanta JE, Beach TG (2012) Arizona Parkinson’s Disease Consortium. Altered pharyngeal muscles in Parkinson disease. J Neuropathol Exp Neurol 71:520–530

    Article  PubMed  Google Scholar 

  37. Kelly NA, Hammond KG, Bickel CS, Windham ST, Tuggle SC, Bamman MM (1985) Effects of aging and Parkinson’s disease on motor unit remodeling: influence of resistance exercise training. J Appl Physiol 124:888–898

    Article  CAS  Google Scholar 

  38. Glendinning DS, Enoka RM (1994) Motor unit behavior in Parkinson’s disease. Phys Ther 74:61–70

    Article  CAS  PubMed  Google Scholar 

  39. Rose MH, Løkkegaard A, Sonne-Holm S, Jensen BR (2013) Effects of training and weight support on muscle activation in Parkinson’s disease. J Electromyogr Kinesiol 23:1499–1504

    Article  PubMed  Google Scholar 

  40. Hallett M, Khoshbin S (1980) A physiological mechanism of bradykinesia. Brain 103:301–314

    Article  CAS  PubMed  Google Scholar 

  41. Calancie B, Nordin M, Wallin U, Hagbarth KE (1987) Motor-unit responses in human wrist flexor and extensor muscles to transcranial cortical stimuli. J Neurophysiol 58:1168–1185

    Article  CAS  PubMed  Google Scholar 

  42. Colebatch JG, Rothwell JC, Day BL, Thompson PD, Marsden CD (1990) Cortical outflow to proximal arm muscles in man. Brain 113:1843–1856

    Article  PubMed  Google Scholar 

  43. Boniface SJ, Mills KR, Schubert M (1991) Responses of single spinal motoneurons to magnetic brain stimulation in healthy subjects and patients with multiple sclerosis. Brain 114:643–662

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Ginanneschi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors did not receive support from any organization for the submitted work

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginanneschi, F., Messa, L.V., Battisti, C. et al. Changes in corticomotor pathway excitability after exercise training in Parkinson’s disease. Neurol Sci 42, 3375–3381 (2021). https://doi.org/10.1007/s10072-020-04960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04960-y

Keywords

Navigation