Skip to main content

Advertisement

Log in

Clinical potential and current progress of mesenchymal stem cells for Parkinson’s disease: a systematic review

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease characterized by severe dyskinesia due to a progressive loss of dopaminergic neurons along the nigro-striatal pathway. The current focus of treatment is to relieve symptoms through administration of levodopa, such as L-3,4-dihydroxy phenylalanine replacement therapy, dopaminergic agonist administration, functional neurosurgery, and gene therapy, rather than preventing dopaminergic neuronal damage. Hence, the application and development of neuroprotective/disease modification strategies is absolutely necessary. Currently, stem cell therapy has been considered for PD treatment. As for the stem cells, mesenchymal stem cells (MSCs) seem to be the most promising. In this review, we analyze the mechanisms of action of MSCs in Parkinson’s disease, including growth factor secretion, exocytosis, and attenuation of neuroinflammation. To determine efficacy and protect patients from possible adverse effects, ongoing rigorous and controlled studies of MSC treatment will be critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function—implications for Parkinson's disease. J Neurochem 137(3):331–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  3. Manne S et al (2019) Alpha-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson's disease patients. Mov Disord

  4. Rovini A et al (2019) Molecular mechanism of olesoxime-mediated neuroprotection through targeting alpha-synuclein interaction with mitochondrial VDAC. Cell Mol Life Sci

  5. Feng ST et al (2019) Dynamin-related protein 1: a protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson's disease. Pharmacol Res:104553

  6. Zhang J et al (2019) Apoptosis signal regulating kinase 1 deletion mitigates alpha-synuclein pre-formed fibril propagation in mice. Neurobiol Aging 85:49–57

    Article  PubMed  CAS  Google Scholar 

  7. Bagheri-Mohammadi S et al (2019) Stem cell-based therapy for Parkinson's disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 234(2):1326–1335

    Article  CAS  PubMed  Google Scholar 

  8. Olanow CW, Kordower JH, Lang AE, Obeso JA (2009) Dopaminergic transplantation for Parkinson's disease: current status and future prospects. Ann Neurol 66(5):591–596

    Article  CAS  PubMed  Google Scholar 

  9. Anisimov SV (2009) Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 20(5–6):347–381

    CAS  PubMed  Google Scholar 

  10. Venkatesh K, Sen D (2017) Mesenchymal stem cells as a source of dopaminergic neurons: a potential cell based therapy for Parkinson's disease. Curr Stem Cell Res Ther 12(4):326–347

    Article  CAS  PubMed  Google Scholar 

  11. Danisovic L, Oravcova L, Krajciova L, Varchulova Novakova Z, Bohac M, Varga I, Vojtassak J (2017) Effect of long-term culture on the biological and morphological characteristics of human adipose tissue-derived stem cells. Journal of Physiology & Pharmacology: An Official Journal of the Polish Physiological Society 68(1):149–158

    CAS  Google Scholar 

  12. Kim SU, Lee HJ, Kim YB (2013) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33(5):491–504

    PubMed  Google Scholar 

  13. Teixeira FG et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70(20):3871–3882

    Article  CAS  PubMed  Google Scholar 

  14. Vizoso FJ et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9)

  15. Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1):121–143

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marques CR et al (2018) Cell secretome based approaches in Parkinson's disease regenerative medicine. Expert Opin Biol Ther 18(12):1235–1245

    Article  CAS  PubMed  Google Scholar 

  17. Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang X et al (2019) Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials:119571

  19. Ji W, Jiang W, Li M, Li J, Li Z (2019) miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie 167:171–178

    Article  CAS  PubMed  Google Scholar 

  20. Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S (2019) Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano 13(9):10015–10028

    Article  CAS  PubMed  Google Scholar 

  21. Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang X, Pan J, Fan J, Qi S, Qiu B (2019) Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY) 11(15):5300–5318

    CAS  Google Scholar 

  22. Hong P et al (2019) The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 10(1):242

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim HW, Lee HS, Kang JM, Bae SH, Kim C, Lee SH, Schwarz J, Kim GJ, Kim JS, Cha DH, Kim J, Chang SW, Lee TH, Moon J (2018) Dual effects of human placenta-derived neural cells on neuroprotection and the inhibition of neuroinflammation in a rodent model of Parkinson's disease. Cell Transplant 27(5):814–830

    Article  PubMed  PubMed Central  Google Scholar 

  24. De la Rosa-Ruiz MDP et al (2019) Mesenchymal stem/stromal cells derived from dental tissues: a comparative in vitro evaluation of their immunoregulatory properties against T cells. Cells 8(12)

  25. Castro LL et al (2019) Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl Med

  26. Bermudez MA et al (2015) Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Invest Ophthalmol Vis Sci 56(2):983–992

    Article  CAS  PubMed  Google Scholar 

  27. Bermudez MA, Sendon-Lago J, Seoane S, Eiro N, Gonzalez F, Saa J, Vizoso F, Perez-Fernandez R (2016) Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp Eye Res 149:84–92

    Article  CAS  PubMed  Google Scholar 

  28. Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82-83:1–11

    Article  CAS  PubMed  Google Scholar 

  29. Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T, Schaumann F, Schmid B, Koehle C, Proksch B, Weissert R, Reichardt HM, van den Brandt J, Buniatian GH, Schwab M, Gleiter CH, Frey WH (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14(1):3–16

    Article  CAS  PubMed  Google Scholar 

  30. Sun L, Li D, Song K, Wei J, Yao S, Li Z, Su X, Ju X, Chao L, Deng X, Kong B, Li L (2017) Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 7(1):2552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lo Furno D, Mannino G, Giuffrida R (2017) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell Physiol

  32. Aliaghaei A, Gardaneh M, Maghsoudi N, Salehinejad P, Gharib E (2016) Dopaminergic induction of umbilical cord mesenchymal stem cells by conditioned medium of choroid plexus epithelial cells reduces apomorphine-induced rotation in Parkinsonian rats. Arch Iran Med 19(8):561–570

    PubMed  Google Scholar 

  33. Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ, Almeida RD (2017) Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 7(1):4153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Astori G et al (2007) “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 5:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Blaber SP et al (2012) Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med 10:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. El Omar R et al (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20(5):523–544

    Article  PubMed  Google Scholar 

  37. Sekula M et al (2017) Polylactide- and polycaprolactone-based substrates enhance angiogenic potential of human umbilical cord-derived mesenchymal stem cells in vitro—implications for cardiovascular repair. Mater Sci Eng C Mater Biol Appl 77:521–533

    Article  CAS  PubMed  Google Scholar 

  38. Cao N, Liao T, Liu J, Fan Z, Zeng Q, Zhou J, Pei H, Xi J, He L, Chen L, Nan X, Jia Y, Yue W, Pei X (2017) Clinical-grade human umbilical cord-derived mesenchymal stem cells reverse cognitive aging via improving synaptic plasticity and endogenous neurogenesis. Cell Death Dis 8(8):e2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856

    Article  CAS  PubMed  Google Scholar 

  40. Silva JD, Lopes-Pacheco M, Paz AHR, Cruz FF, Melo EB, de Oliveira MV, Xisto DG, Capelozzi VL, Morales MM, Pelosi P, Cirne-Lima E, Rocco PRM (2018) Mesenchymal stem cells from bone marrow, adipose tissue, and lung tissue differentially mitigate lung and distal organ damage in experimental acute respiratory distress syndrome. Crit Care Med 46(2):e132–e140

    Article  PubMed  Google Scholar 

  41. von Einem JC et al (2017) Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells—TREAT-ME-1—a phase I, first in human, first in class trial. Oncotarget 8(46):80156–80166

    Google Scholar 

  42. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    Article  CAS  PubMed  Google Scholar 

  43. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res 155(2):62–70

    Article  CAS  PubMed  Google Scholar 

  44. Yin F, Tian ZM, Liu S, Zhao QJ, Wang RM, Shen L, Wieman J, Yan Y (2012) Transplantation of human retinal pigment epithelium cells in the treatment for Parkinson disease. CNS Neurosci Ther 18(12):1012–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiong N et al (2010) Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats. Biol Blood Marrow Transplant 16(11):1519–1529

    Article  PubMed  Google Scholar 

  46. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67(19):9142–9149

    Article  CAS  PubMed  Google Scholar 

  47. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 24(3):781–792

    Article  CAS  PubMed  Google Scholar 

  48. Shetty P, Thakur AM, Viswanathan C (2013) Dopaminergic cells, derived from a high efficiency differentiation protocol from umbilical cord derived mesenchymal stem cells, alleviate symptoms in a Parkinson's disease rodent model. Cell Biol Int 37(2):167–180

    Article  CAS  PubMed  Google Scholar 

  49. Schwerk A et al (2015) Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson's disease. Regen Med 10(4):431–446

    Article  CAS  PubMed  Google Scholar 

  50. Ye M, Wang XJ, Zhang YH, Lu GQ, Liang L, Xu JY, Sheng-di Chen (2007) Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson's disease. Parkinsonism Relat Disord 13(1):44–49

    Article  PubMed  Google Scholar 

  51. Chen D, Fu W, Zhuang W, Lv C, Li F, Wang X (2017) Therapeutic effects of intranigral transplantation of mesenchymal stem cells in rat models of Parkinson's disease. J Neurosci Res 95(3):907–917

    Article  CAS  PubMed  Google Scholar 

  52. Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M (2001) Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett 316(2):67–70

    Article  CAS  PubMed  Google Scholar 

  53. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427

    Article  PubMed  CAS  Google Scholar 

  54. Zhou Y et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32(1):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Whone AL et al (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96

    Article  CAS  PubMed  Google Scholar 

  58. Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes-Pinheiro B, Anjo S, Manadas B, Behie LA, Sousa N, Salgado AJ (2017) Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson's disease. Stem Cells Transl Med 6(2):634–646

    Article  CAS  PubMed  Google Scholar 

  59. Moon HE, Yoon SH, Hur YS, Park HW, Ha JY, Kim KH, Shim JH, Yoo SH, Son JH, Paek SL, Kim IK, Hwang JH, Kim DG, Kim HJ, Jeon BS, Park SS, Paek SH (2013) Mitochondrial dysfunction of immortalized human adipose tissue-derived mesenchymal stromal cells from patients with Parkinson's disease. Exp Neurobiol 22(4):283–300

    Article  PubMed  PubMed Central  Google Scholar 

  60. Choi HS et al (2015) Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol Aging 36(10):2885–2892

    Article  CAS  PubMed  Google Scholar 

  61. Parga JA et al (2017) Prostaglandin EP2 receptors mediate mesenchymal stromal cell—neuroprotective effects on dopaminergic neurons. Mol Neurobiol

  62. Pchelintseva E, Djamgoz MBA (2017) Mesenchymal stem cell differentiation: control by calcium-activated potassium channels. J Cell Physiol

  63. Shetty P, Ravindran G, Sarang S, Thakur AM, Rao HS, Viswanathan C (2009) Clinical grade mesenchymal stem cells transdifferentiated under xenofree conditions alleviates motor deficiencies in a rat model of Parkinson's disease. Cell Biol Int 33(8):830–838

  64. Park HJ, Shin JY, Lee BR, Kim HO, Lee PH (2012) Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transplant 21(8):1629–1640

    Article  PubMed  Google Scholar 

  65. Kang EJ, Lee YH, Kim MJ, Lee YM, Kumar BM, Jeon BG, Ock SA, Kim HJ, Rho GJ (2013) Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 7(3):169–182

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81471188, 81671135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosu Gu.

Ethics declarations

Conflict of interests

The authors have declared that no conflict of interests exists.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Shen, J., Ke, K. et al. Clinical potential and current progress of mesenchymal stem cells for Parkinson’s disease: a systematic review. Neurol Sci 41, 1051–1061 (2020). https://doi.org/10.1007/s10072-020-04240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04240-9

Keywords

Navigation