Skip to main content

Advertisement

Log in

Abnormal nuclear aggregation and myotube degeneration in myotonic dystrophy type 1

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Myotonic dystrophy type 1 (DM1) is caused by CTG nucleotide repeat expansions in the 3′-untranslated region (3′-UTR) of the dystrophia myotonica protein kinase (DMPK) gene. The expanded CTG repeats encode toxic CUG RNAs that cause disease, largely through RNA gain-of-function. DM1 is a fatal disease characterized by progressive muscle wasting, which has no cure. Regenerative medicine has emerged as a promising therapeutic modality for DM1, especially with the advancement of induced pluripotent stem (iPS) cell technology and therapeutic genome editing. However, there is an unmet need to identify in vitro outcome measures to demonstrate the therapeutic effects prior to in vivo clinical trials. In this study, we examined the muscle regeneration (myotube formation) in normal and DM1 myoblasts in vitro to establish outcome measures for therapeutic monitoring. We found normal proliferation of DM1 myoblasts, but abnormal nuclear aggregation during the early stage myotube formation, as well as myotube degeneration during the late stage of myotube formation. We concluded that early abnormal nuclear aggregation and late myotube degeneration offer easy and sensitive outcome measures to monitor therapeutic effects in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Harper P (2001) Myotonic dystrophy, 3rd edn. WB Saunders, London

    Google Scholar 

  2. Romeo V (2012) Myotonic dystrophy type 1 or Steinert’s disease. Adv Exp Med Biol 724:239–257. https://doi.org/10.1007/978-1-4614-0653-2_18

    Article  CAS  PubMed  Google Scholar 

  3. Campbell C, Levin S, Siu VM, Venance S, Jacob P (2013) Congenital myotonic dystrophy: Canadian population-based surveillance study. J Pediatr 163(1):120–125 e121–123. https://doi.org/10.1016/j.jpeds.2012.12.070

    Article  PubMed  Google Scholar 

  4. Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P et al (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255(5049):1256–1258

    Article  CAS  PubMed  Google Scholar 

  5. Ashizawa T, Sarkar PS (2011) Myotonic dystrophy types 1 and 2. Handb Clin Neurol 101:193–237. https://doi.org/10.1016/B978-0-08-045031-5.00015-3

    Article  PubMed  Google Scholar 

  6. Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277. https://doi.org/10.1146/annurev.neuro.29.051605.113014

    Article  CAS  PubMed  Google Scholar 

  7. Lee JE, Cooper TA (2009) Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 37(Pt 6):1281–1286. https://doi.org/10.1042/BST0371281

    Article  CAS  PubMed  Google Scholar 

  8. Gomes-Pereira M, Cooper TA, Gourdon G (2011) Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol Med 17(9):506–517. https://doi.org/10.1016/j.molmed.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  9. Chau A, Kalsotra A (2015) Developmental insights into the pathology of and therapeutic strategies for DM1: back to the basics. Dev Dyn 244(3):377–390. https://doi.org/10.1002/dvdy.24240

    Article  CAS  PubMed  Google Scholar 

  10. Meola G, Cardani R (2015) Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta 1852(4):594–606. https://doi.org/10.1016/j.bbadis.2014.05.019

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  12. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  Google Scholar 

  13. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181

    Article  CAS  PubMed  Google Scholar 

  14. Maffioletti SM, Gerli MF, Ragazzi M, Dastidar S, Benedetti S, Loperfido M, VandenDriessche T, Chuah MK, Tedesco FS (2015) Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nat Protoc 10(7):941–958. https://doi.org/10.1038/nprot.2015.057

    Article  CAS  PubMed  Google Scholar 

  15. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. https://doi.org/10.1016/j.stem.2012.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darabi R, Perlingeiro RC (2016) Derivation of skeletal myogenic precursors from human pluripotent stem cells using conditional expression of PAX7. Methods Mol Biol 1357:423–439. https://doi.org/10.1007/7651_2014_134

    Article  CAS  PubMed  Google Scholar 

  17. Chal J, Al Tanoury Z, Hestin M, Gobert B, Aivio S, Hick A, Cherrier T, Nesmith AP, Parker KK, Pourquie O (2016) Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 11(10):1833–1850. https://doi.org/10.1038/nprot.2016.110

    Article  CAS  PubMed  Google Scholar 

  18. Gao Y, Guo X, Santostefano K, Wang Y, Reid T, Zeng D, Terada N, Ashizawa T, Xia G (2016) Genome therapy of myotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy. Mol Ther 24(8):1378–1387. https://doi.org/10.1038/mt.2016.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Hao L, Wang H, Santostefano K, Thapa A, Cleary J, Li H, Guo X, Terada N, Ashizawa T, Xia G (2018) Therapeutic genome editing for myotonic dystrophy type 1 using CRISPR/Cas9. Mol Ther 26:2617–2630. https://doi.org/10.1016/j.ymthe.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  20. Nesmith AP, Wagner MA, Pasqualini FS, O’Connor BB, Pincus MJ, August PR, Parker KK (2016) A human in vitro model of Duchenne muscular dystrophy muscle formation and contractility. J Cell Biol 215(1):47–56. https://doi.org/10.1083/jcb.201603111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sarnat HB, Silbert SW (1976) Maturational arrest of fetal muscle in neonatal myotonic dystrophy. A pathologic study of four cases. Arch Neurol 33(7):466–474

    Article  CAS  PubMed  Google Scholar 

  22. Sahgal V, Bernes S, Sahgal S, Lischwey C, Subramani V (1983) Skeletal muscle in preterm infants with congenital myotonic dystrophy. Morphologic and histochemical study. J Neurol Sci 59(1):47–55

    Article  CAS  PubMed  Google Scholar 

  23. Farkas-Bargeton E, Barbet JP, Dancea S, Wehrle R, Checouri A, Dulac O (1988) Immaturity of muscle fibers in the congenital form of myotonic dystrophy: its consequences and its origin. J Neurol Sci 83(2–3):145–159

    Article  CAS  PubMed  Google Scholar 

  24. Thornell LE, Lindstom M, Renault V, Klein A, Mouly V, Ansved T, Butler-Browne G, Furling D (2009) Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 1. Neuropathol Appl Neurobiol 35(6):603–613. https://doi.org/10.1111/j.1365-2990.2009.01014.x

    Article  PubMed  Google Scholar 

  25. Furling D, Coiffier L, Mouly V, Barbet JP, St Guily JL, Taneja K, Gourdon G, Junien C, Butler-Browne GS (2001) Defective satellite cells in congenital myotonic dystrophy. Hum Mol Genet 10(19):2079–2087

    Article  CAS  PubMed  Google Scholar 

  26. Furling D, Lemieux D, Taneja K, Puymirat J (2001) Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul Disord 11(8):728–735

    Article  CAS  PubMed  Google Scholar 

  27. Furling D, Doucet G, Langlois MA, Timchenko L, Belanger E, Cossette L, Puymirat J (2003) Viral vector producing antisense RNA restores myotonic dystrophy myoblast functions. Gene Ther 10(9):795–802. https://doi.org/10.1038/sj.gt.3301955

    Article  CAS  PubMed  Google Scholar 

  28. Xia G, Santostefano KE, Goodwin M, Liu J, Subramony SH, Swanson MS, Terada N, Ashizawa T (2013) Generation of neural cells from DM1 induced pluripotent stem cells as cellular model for the study of central nervous system neuropathogenesis. Cell Rep 15(2):166–177. https://doi.org/10.1089/cell.2012.0086

    Article  CAS  Google Scholar 

  29. Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LP, Swanson MS, Ashizawa T (2015) Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells 33(6):1829–1838. https://doi.org/10.1002/stem.1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia G, Ashizawa T (2015) Dynamic changes of nuclear RNA foci in proliferating DM1 cells. Histochem Cell Biol 143:557–564. https://doi.org/10.1007/s00418-015-1315-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murata-Hori M, Tatsuka M, Wang YL (2002) Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol Biol Cell 13(4):1099–1108. https://doi.org/10.1091/mbc.01-09-0467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKinnell IW, Parise G, Rudnicki MA (2005) Muscle stem cells and regenerative myogenesis. Curr Top Dev Biol 71:113–130. https://doi.org/10.1016/S0070-2153(05)71004-8

    Article  CAS  PubMed  Google Scholar 

  33. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21(12):1455–1463. https://doi.org/10.1038/nm.3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gadalla SM, Lund M, Pfeiffer RM, Gortz S, Mueller CM, Moxley RT 3rd, Kristinsson SY, Bjorkholm M, Shebl FM, Hilbert JE, Landgren O, Wohlfahrt J, Melbye M, Greene MH (2011) Cancer risk among patients with myotonic muscular dystrophy. JAMA 306(22):2480–2486. https://doi.org/10.1001/jama.2011.1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez-Torron R, Garcia-Puga M, Emparanza JI, Maneiro M, Cobo AM, Poza JJ, Espinal JB, Zulaica M, Ruiz I, Martorell L, Otaegui D, Matheu A, Lopez de Munain A (2016) Cancer risk in DM1 is sex-related and linked to miRNA-200/141 downregulation. Neurology 87(12):1250–1257. https://doi.org/10.1212/WNL.0000000000003124

    Article  CAS  PubMed  Google Scholar 

  36. Win AK, Perattur PG, Pulido JS, Pulido CM, Lindor NM (2012) Increased cancer risks in myotonic dystrophy. Mayo Clin Proc 87(2):130–135. https://doi.org/10.1016/j.mayocp.2011.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schoser BG, Kress W, Walter MC, Halliger-Keller B, Lochmuller H, Ricker K (2004) Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain 127(Pt 8):1868–1877. https://doi.org/10.1093/brain/awh210

    Article  PubMed  Google Scholar 

  38. Timchenko NA, Iakova P, Cai ZJ, Smith JR, Timchenko LT (2001) Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol Cell Biol 21(20):6927–6938. https://doi.org/10.1128/MCB.21.20.6927-6938.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loro E, Rinaldi F, Malena A, Masiero E, Novelli G, Angelini C, Romeo V, Sandri M, Botta A, Vergani L (2010) Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells. Cell Death Differ 17(8):1315–1324. https://doi.org/10.1038/cdd.2010.33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the NIH/NIAMS grant K08 AR064836 to G.X. mentored by Maury S. Swanson, Tetsuo Ashizawa, Laura Ranum, Naohiro Terada, and SH Subramony at the University of Florida and Fernando Valenzuela in University of New Mexico and by startup funds from the Office of Research at the Health Science Center of University of New Mexico. We would like to thank Alexis K Hall for proofreading, as well as submitting suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuming Xu or Guangbin Xia.

Ethics declarations

The present study involved research on healthy and DM1 subjects who provided their informed consent to participate.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Fig. 1

Homogeneity of myoblasts in normal and DM1 myoblasts passage 7 (lower power images). (PNG 1334 kb)

High resolution image (TIF 5242 kb)

Supplemental Fig. 2

Nuclear aggregation in DM1 myotubes. On day 3, the nuclear aggregation was easily spotted in DM1 myotubes (B) while such phenomena were barely seen in normal myotubes (phase-contrast images). (PNG 201 kb)

High resolution image (TIF 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hao, L., Li, H. et al. Abnormal nuclear aggregation and myotube degeneration in myotonic dystrophy type 1. Neurol Sci 40, 1255–1265 (2019). https://doi.org/10.1007/s10072-019-03783-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03783-w

Keywords

Navigation