Skip to main content
Log in

Hand muscles corticomotor excitability in hereditary spastic paraparesis type 4

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Transcranial magnetic stimulation (TMS) studies on the pathways to the upper limbs have revealed inconsistent results in patients harboring mutations in SPAST/SPG4 gene, responsible for the commonest form of hereditary spastic paraplegia (HSP). This paper is addressed to study the corticomotor excitability of the pathways to the upper limbs in SPG4 subjects. We assessed the corticomotor excitability of hand muscles in 12 subjects belonging to 7 unrelated SPG4 families and in 12 control subjects by stimulus–response curve [input–output (I–O) curve]. All the parameters of the recruitment curve (threshold, V50, slope and plateau) did not differ significantly from those of the controls. Presence of upper limb hyper-reflexia did not influence the results of I–O curve. Considering the multiplicity of possible genes/loci accounting for pure HSPs, performing TMS analyses could be helpful in differential diagnosis of pure HSPs in the absence of other clinical or neuroimaging tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADM:

Abductor digiti minimi muscle

CMCT:

Central motor conduction time

EMG:

Electromyography

HSP:

Hereditary spastic paraplegia

I–O:

Input–output

MEP:

Motor evoked potentials

SPRS:

Spastic Paraplegia Rating Scale

TMS:

Transcranial magnetic stimulation

References

  1. McDermott C, White K, Bushby K, Shaw P (2009) Hereditary spastic paraparesis: a review of new developments. J Neurol Neurosurg Psychiatry 69:150–160

    Article  Google Scholar 

  2. Schüle R, Schöls L (2011) Genetics of hereditary spastic paraplegias. Semin Neurol 31:484–493

    Article  PubMed  Google Scholar 

  3. Fassier C, Tarrade A, Peris L et al (2013) Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis Model Mech 6:72–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schwarz GA, Liu CN (1956) Hereditary familial spastic paraplegia. Further clinical and pathologic observations. Arch Neurol Psychiatry 75:144–162

    Article  CAS  Google Scholar 

  5. Behan WMH, Maia M (1974) Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 37:8–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. DeLuca GC, Ebers GC, Esiri MM (2004) The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 30:576–584

    Article  CAS  PubMed  Google Scholar 

  7. Bönsch D, Schwindt A, Navratil P et al (2003) Motor system abnormalities in hereditary spastic paraparesis type 4 (SPG 4) depend on the type of mutation in the spastin gene. J Neurol Neurosurg Psychiatry 74:1109–1112

    Article  PubMed Central  PubMed  Google Scholar 

  8. Nardone R, Tezzon F (2003) Transcranial magnetic stimulation study in hereditary spastic paraparesis. Eur Neurol 49:234–237

    Article  CAS  PubMed  Google Scholar 

  9. Sartucci F, Tovani S, Murri L, Sagliocco L (2007) Motor and somatosensory evoked potentials in autosomal dominant hereditary spastic paraparesis (ADHSP) linked to chromosome 2p, SPG4. Brain Res Bull 74:243–249

    Article  CAS  PubMed  Google Scholar 

  10. Schüle R, Holland-Letz T, Klimpe S et al (2006) The Spastic Paraplegia Rating Scale (SPRS): a reliable and valid measure of disease severity. Neurology 67:430–434

    Article  PubMed  Google Scholar 

  11. Rossini PM, Barker AT, Berardelli A et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  CAS  PubMed  Google Scholar 

  12. Carroll TJ, Riek S, Carson RG (2001) Reliability of the input–output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202

    Article  CAS  PubMed  Google Scholar 

  13. Devanne H, Lavoie BA, Capaday C (1997) Input–output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338

    Article  CAS  PubMed  Google Scholar 

  14. Ginanneschi F, Del Santo F, Dominici F, Gelli F, Mazzocchio T, Rossi A (2005) Changes in corticomotor excitability of hand muscles in relation to static shoulder positions. Exp Brain Res 161:374–382

    Article  CAS  PubMed  Google Scholar 

  15. Salinas S, Proukakis C, Crosby A, Warner TT (2008) Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7:1127–1138

    Article  CAS  PubMed  Google Scholar 

  16. Schulte T, Miterski B, Börnke C, Przuntek H, Epplen JT, Schöls L (2003) Neurophysiological findings in SPG4 patients differ from other types of spastic paraplegia. Neurology 60:1529–1532

    Article  CAS  PubMed  Google Scholar 

  17. Crone C, Petersen NT, Nielsen JE, Hansen NL, Nielsen JB (2004) Reciprocal inhibition and corticospinal transmission in the arm and leg in patients with autosomal dominant pure spastic paraparesis (ADPSP). Brain 127:2693–2702

    Article  CAS  PubMed  Google Scholar 

  18. Lang N, Optenhoefel T, Deuschl G, Klebe S (2011) Axonal integrity of corticospinal projections to the upper limbs in patients with pure hereditary spastic paraplegia. Clin Neurophysiol 122:1417–1420

    Article  PubMed  Google Scholar 

  19. Jørgensen LM, Nielsen JE, Ravnborg M (2005) MEP recruitment curves in multiple sclerosis and hereditary spastic paraplegia. J Neurol Sci 237:25–29

    Article  PubMed  Google Scholar 

  20. Orlacchio A, Kawarai T, Gaudiello F et al (2005) Clinical and genetic study of a large SPG4 Italian family. Mov Disord 20:1055–1059

    Article  PubMed  Google Scholar 

  21. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488

    Article  PubMed  Google Scholar 

  22. Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    CAS  PubMed  Google Scholar 

  23. Reid E (2003) Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J Med Genet 40:81–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Blackstone C, O’Kane CJ, Reid E (2011) Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci 12:31–42

    Article  CAS  PubMed  Google Scholar 

  25. Manganelli F, Pisciotta C, Dubbioso R et al (2011) Electrophysiological characterisation in hereditary spastic paraplegia type 5. Clin Neurophysiol 122:819–822

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria T. Dotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginanneschi, F., Carluccio, M.A., Mignarri, A. et al. Hand muscles corticomotor excitability in hereditary spastic paraparesis type 4. Neurol Sci 35, 1287–1291 (2014). https://doi.org/10.1007/s10072-014-1707-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1707-7

Keywords

Navigation