Skip to main content

Advertisement

Log in

Diffusion tensor MRI changes in gray structures of the frontal-subcortical circuits in amyotrophic lateral sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

In this study, we used an automated segmentation of regions of interest and co-registration to diffusion tensor imaging (DTI) images to investigate whether microstructural abnormalities occur in gray structures of the frontal-subcortical circuits in patients with amyotrophic lateral sclerosis (ALS). Twenty-four patients with probable or definite sporadic ALS and 22 healthy controls were enrolled in the study. Thirteen out of 24 ALS patients and all of the control subjects underwent a detailed neuropsychological evaluation. DTI was performed to measure mean diffusivity (MD) and fractional anisotropy in the frontal cortex, caudate, putamen, globus pallidus, thalamus, amygdala and hippocampus. MD values of ALS patients were significantly higher in the frontal cortex (P = 0.023), caudate (P = 0.01), thalamus (P = 0.019), amygdala (P = 0.012) and hippocampus (P = 0.002) compared to controls. MD of these structures significantly correlated to a variable degree with neurological disability and neuropsychological dysfunctions. The increased MD values in several cortical and subcortical gray structures and their correlations with neuropsychological variables substantiate a multisystemic degeneration in ALS and suggest that dysfunctions of frontal–subcortical circuits could play a pivotal role in frontal impairment and behavioral symptoms in ALS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rowland LP (1998) Diagnosis of amyotrophic lateral sclerosis. J Neurol Sci 160(Suppl 1):6–24

    Article  Google Scholar 

  2. Smith MC (1960) Nerve fibre degeneration in the brain in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 23:269–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bigio EH, Lipton AM, White CL 3rd, Dickson DW, Hirano A (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathol Appl Neurobiol 29:239–253

    Article  CAS  PubMed  Google Scholar 

  4. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and pattern of cognitive impairment in sporadic amyotrophic lateral sclerosis. Neurology 65:586–590

    Article  CAS  PubMed  Google Scholar 

  5. Talbot PR, Goulding PJ, Lloyd JJ, Snowden JS, Neary D, Testa HJ (1995) Inter-relation between “classic” motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry 58:541–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Thivard L, Pradat PF, Lehéricy S, Lacomblez L, Dormont D, Chiras J, Benali H, Meininger V (2007) Diffusion tension imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J Neurol Neurosurg Psychiatry 78:889–892

    Article  PubMed Central  PubMed  Google Scholar 

  7. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177:401–405

    CAS  PubMed  Google Scholar 

  8. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusiontensor MRI. J Magn Reson B 111:209–219

    Article  CAS  PubMed  Google Scholar 

  9. Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    Article  CAS  PubMed  Google Scholar 

  10. Graham JM, Papadakis N, Evans J, Widjaja E, Romanowski CA, Paley MN, Wallis LI, Wilkinson ID, Shaw PJ, Griffiths PD (2004) Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 63:2111–2119

    Article  CAS  PubMed  Google Scholar 

  11. Toosy AT, Werring DJ, Orrell RW, Howard RS, King MD, Barker GJ, Miller DH, Thompson AJ (2003) Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 74:1250–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ciccarelli O, Behrens TE, Johansen-Berg H, Talbot K, Orrell RW, Howard RS, Nunes RG, Miller DH, Matthews PM, Thompson AJ, Smith SM (2009) Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. Hum Brain Mapp 30:615–624

    Article  PubMed  Google Scholar 

  13. Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR (2010) Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75:1645–1652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Cirillo M, Esposito F, Tedeschi G, Caiazzo G, Sagnelli A, Piccirillo G, Conforti R, Tortora F, Monsurrò MR, Cirillo S, Trojsi F (2012) Widespread microstructural white matter involvement in amyotrophic lateral sclerosis: a whole-brain DTI study. AJNR Am J Neuroradiol 33:1102–1108

    Article  CAS  PubMed  Google Scholar 

  15. Canu E, Agosta F, Riva N, Sala S, Prelle A, Caputo D, Perini M, Comi G, Filippi M (2011) The topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor MR imaging. AJNR Am J Neuroradiol 32:1307–1314

    Article  CAS  PubMed  Google Scholar 

  16. Sharma KR, Sheriff S, Maudsley A, Govind V (2013) Diffusion tensor imaging of basal ganglia and thalamus in amyotrophic lateral sclerosis. J Neuroimaging 23:368–374

    Article  PubMed  Google Scholar 

  17. Kawashima T, Doh-ura K, Kikuchi H, Iwaki T (2001) Cognitive dysfunction in patients with amyotrophic lateral sclerosis is associated with spherical or crescent-shaped ubiquitinated intraneuronal inclusions in the parahippocampal gyrus and amygdala, but not in the neostriatum. Acta Neuropathol 102:467–472

    CAS  PubMed  Google Scholar 

  18. Takeda T, Uchihara T, Arai N, Mizutani T, Iwata M (2009) Progression of hippocampal degeneration in amyotrophic lateral sclerosis with or without memory impairment: distinction from Alzheimer disease. Acta Neuropathol 117:35–44

    Article  CAS  PubMed  Google Scholar 

  19. Anderson VE, Cairns NJ, Leigh PN (1995) Involvement of the amygdala, dentate and hippocampus in motor neuron disease. J Neurol Sci 129(Suppl):75–78

    Article  PubMed  Google Scholar 

  20. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  21. Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron Diseases (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  CAS  PubMed  Google Scholar 

  22. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21

    Article  CAS  PubMed  Google Scholar 

  23. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  24. Beck AT, Steer RA, Brown GK (1996) Manual for beck depression inventory-II. Psychological Corporation, San Antonio

    Google Scholar 

  25. Rey A (1958) Memorisation d’une serie de 15 mots en 5 repetitions. Presses Universitaries des France, Paris

  26. Benton A, Hamsher KD (1989) Multilingual aphasia examination. AJA Associates, Iowa City

    Google Scholar 

  27. Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12:313–324

    Article  CAS  PubMed  Google Scholar 

  28. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626

    Article  CAS  PubMed  Google Scholar 

  29. Cherubini A, Péran P, Caltagirone C, Sabatini U, Spalletta G (2009) Aging of subcortical nuclei: microstructural, mineralization and atrophy modifications measured in vivo using MRI. Neuroimage 48:29–36

    Article  PubMed  Google Scholar 

  30. Nicoletti G, Lodi R, Condino F, Tonon C, Fera F, Malucelli E, Manners D, Zappia M, Morgante L, Barone P, Barbiroli B, Quattrone A (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 129:2679–2687

    Article  PubMed  Google Scholar 

  31. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    CAS  PubMed  Google Scholar 

  32. Senda J, Kato S, Kaga T, Ito M, Atsuta N, Nakamura T, Watanabe H, Tanaka F, Naganawa S, Sobue G (2011) Progressive and widespread brain damage in ALS: MRI voxel-based morphometry and diffusion tensor imaging study. Amyotroph Lateral Scler 12:59–69

    Article  PubMed  Google Scholar 

  33. Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, Hornberger M (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS ONE 7:e43993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sharma KR, Saigal G, Maudsley AA, Govind V (2011) 1H MRS of basal ganglia and thalamus in amyotrophic lateral sclerosis. NMR Biomed 24:1270–1276

    Article  PubMed Central  PubMed  Google Scholar 

  35. Al-Sarraj S, Maekawa S, Kibble M, Everall I, Leigh N (2002) Ubiquitin-only intraneuronal inclusion in the substantia nigra is a characteristic feature of motor neurone disease with dementia. Neuropathol Appl Neurobiol 28:120–128

    Article  CAS  PubMed  Google Scholar 

  36. Geser F, Martinez-Lage M, Robinson J, Uryu K, Neumann M, Brandmeir NJ, Xie SX, Kwong LK, Elman L, McCluskey L, Clark CM, Malunda J, Miller BL, Zimmerman EA, Qian J, Van Deerlin V, Grossman M, Lee VM, Trojanowski JQ (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189

    Article  PubMed Central  PubMed  Google Scholar 

  37. Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, McCluskey L, Xie SX, Lee VM, Trojanowski JQ (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641

    Article  PubMed  Google Scholar 

  38. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  39. Verstraete E, Veldink JH, Hendrikse J, Schelhaas HJ, van den Heuvel MP, van den Berg LH (2012) Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 83:383–388

    Article  PubMed  Google Scholar 

  40. D’Ambrosio A, Gallo A, Trojsi F, Corbo D, Esposito F, Cirillo M, Monsurró MR, Tedeschi G (2013) Frontotemporal cortical thinning in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A3753

  41. DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  42. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, Murphy J, Shoesmith C, Rosenfeld J, Leigh PN, Bruijn L, Ince P, Figlewicz D (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146

    Article  PubMed  Google Scholar 

  43. Cummings JL (1995) Anatomic and behavioral aspects of frontal-subcortical circuits. Ann N Y Acad Sci 15(769):1–13

    Article  Google Scholar 

  44. Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 9:141–151

    PubMed Central  PubMed  Google Scholar 

  45. Tekin S, Cummings JL (2002) Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53:647–654

    Article  PubMed  Google Scholar 

  46. Agosta F, Pagani E, Petrolini M, Caputo D, Perini M, Prelle A, Salvi F, Filippi M (2010) Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am J Neuroradiol 31:1457–1461

    Article  CAS  PubMed  Google Scholar 

  47. Sato K, Aoki S, Iwata NK, Masutani Y, Watadani T, Nakata Y, Yoshida M, Terao Y, Abe O, Ohtomo K, Tsuji S (2010) Diffusion tensor tract-specific analysis of the uncinate fasciculus in patients with amyotrophic lateral sclerosis. Neuroradiology 52:729–733

    Article  PubMed  Google Scholar 

  48. Sarro L, Agosta F, Canu E, Riva N, Prelle A, Copetti M, Riccitelli G, Comi G, Filippi M (2011) Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. AJNR Am J Neuroradiol 32:1866–1872

    Article  CAS  PubMed  Google Scholar 

  49. Sage CA, Peeters RR, Görner A, Robberecht W, Sunaert S (2007) Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 34:486–499

    Article  PubMed  Google Scholar 

  50. Tsujimoto M, Senda J, Ishihara T, Niimi Y, Kawai Y, Atsuta N, Watanabe H, Tanaka F, Naganawa S, Sobue G (2011) Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging. J Neurol Sci 307:34–40

    Article  PubMed  Google Scholar 

  51. Li J, Pan P, Song W, Huang R, Chen K, Shang H (2012) A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis. Neurobiol Aging 33:1833–1838

    Article  PubMed  Google Scholar 

  52. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003

    Article  CAS  PubMed  Google Scholar 

  53. Christidi F, Zalonis I, Smyrnis N, Evdokimidis I (2012) Selective attention and the three-process memory model for the interpretation of verbal free recall in amyotrophic lateral sclerosis. J Int Neuropsychol Soc 18:809–818

    Article  PubMed  Google Scholar 

  54. Ludolph AC, Langen KJ, Regard M, Herzog H, Kempo B, Kurwert T (1992) Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand 85:81–89

    Article  CAS  PubMed  Google Scholar 

  55. Gallassi R, Montagna P, Ciardulli C, Lorusso S, Mussuto V, Stracciari A (1985) Cognitive impairment in motor neuron disease. Acta Neurol Scand 71:480–484

    Article  CAS  PubMed  Google Scholar 

  56. Moretti R, Torre P, Antonello RM, Carraro N, Cazzato G, Bava A (2002) Complex cognitive disruption in motor neuron disease. Dement Geriatr Cogn Disord 14:141–150

    Article  PubMed  Google Scholar 

  57. Ahn SW, Kim SH, Kim JE, Kim SM, Kim SH, Sung JJ, Lee KW, Hong YH (2011) Frontal assessment battery to evaluate frontal lobe dysfunction in ALS patients. Can J Neurol Sci 38:242–246

    PubMed  Google Scholar 

  58. Stukovnik V, Zidar J, Podnar S, Repovs G (2010) Amyotrophic lateral sclerosis patients show executive impairments on standard neuropsychological measures and an ecologically valid motor-free test of executive functions. J Clin Exp Neuropsychol 32:1095–1109

    Article  PubMed  Google Scholar 

  59. Achi EY, Rudnicki SA (2012) ALS and frontotemporal dysfunction: a review. Neurol Res Int 2012:806306

    Article  PubMed Central  PubMed  Google Scholar 

  60. Mioshi E, Lillo P, Yew B, Hsieh S, Savage S, Hodges JR, Kiernan MC, Hornberger M (2013) Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 80:1117–1123

    Article  PubMed  Google Scholar 

  61. Cerami C, Dodich A, Canessa N, Crespi C, Iannaccone S, Corbo M, Lunetta C, Consonni M, Scola E, Falini A, Cappa SF (2013) Emotional empathy in amyotrophic lateral sclerosis: a behavioural and voxel-based morphometry study. Amyotroph Lateral Scler Frontotemporal Degener. doi:10.3109/21678421.2013.785568

  62. Passamonti L, Fera F, Tessitore A, Russo A, Cerasa A, Gioia CM, Monsurrò MR, Migliaccio R, Tedeschi G, Quattrone A (2013) Dysfunctions within limbic-motor networks in amyotrophic lateral sclerosis. Neurobiol Aging 34:2499–2509

    Article  PubMed  Google Scholar 

  63. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH (1996) Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 61:450–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Averill AJ, Kasarskis EJ, Segerstrom SC (2007) Psychological health in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 8:243–254

    Article  PubMed  Google Scholar 

  65. Atassi N, Cook A, Pineda CM, Yerramilli-Rao P, Pulley D, Cudkowicz M (2011) Depression in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 12:109–112

    Article  PubMed Central  PubMed  Google Scholar 

  66. Jelsone-Swain L, Persad C, Votruba KL, Weisenbach SL, Johnson T, Gruis KL, Welsh RC (2012) The relationship between depressive symptoms, disease state, and cognition in amyotrophic lateral sclerosis. Front Psychol 3:542

    Article  PubMed Central  PubMed  Google Scholar 

  67. Grossman AB, Woolley-Levine S, Bradley WG, Miller RG (2007) Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 8:56–61

    Article  PubMed  Google Scholar 

  68. Gibbons ZC, Richardson A, Neary D, Snowden JS (2008) Behaviour in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 9:67–74

    Article  PubMed  Google Scholar 

  69. Woolley SC, Zhang Y, Schuff N, Weiner MW, Katz JS (2011) Neuroanatomical correlates of apathy in ALS using 4 Tesla diffusion tensor MRI. Amyotroph Lateral Scler 12:52–58

    Article  PubMed  Google Scholar 

  70. Eslinger PJ, Moore P, Antani S, Anderson C, Grossman M (2012) Apathy in frontotemporal dementia: behavioral and neuroimaging correlates. Behav Neurol 25:127–136

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Quattrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbagallo, G., Nicoletti, G., Cherubini, A. et al. Diffusion tensor MRI changes in gray structures of the frontal-subcortical circuits in amyotrophic lateral sclerosis. Neurol Sci 35, 911–918 (2014). https://doi.org/10.1007/s10072-013-1626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1626-z

Keywords

Navigation