Skip to main content
Log in

Dietary cholesterol alters memory and synaptic structural plasticity in young rat brain

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Cholesterol plays an important role in synaptic plasticity, learning and memory. To better explore how dietary cholesterol contributes to learning and memory and the related changes in synaptic structural plasticity, rats were categorized into a regular diet (RD) group and a cholesterol-enriched diet (CD) group, and were fed with respective diet for 2 months. Dietary cholesterol impacts on learning and memory, hippocampal synaptic ultrastructure, expression levels of postsynaptic density-95 (PSD-95), synaptophysin (SYP) and cannabinoid receptor type 1 (CB1R) were investigated. We found CD rats had better performances in learning and memory using Morris water maze and object recognition test than RD rats. The memory improvement was accompanied with alterations of synaptic ultrastructure in the CA1 area of the hippocampus evaluated by electron microscopy, enhanced immunoreactivity of SYP, a presynaptic marker in hippocampus detected by immunocytochemistry, as well as increased levels of PSD-95, SYP and decreased level of CB1R in brains of CD rats determined by Western blot. Taken together, the results suggest that the improvement of learning and memory abilities of the young adult rats induced by dietary cholesterol may be linked with changes in synaptic structural plasticity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo J, Chi S, Xu H, Jin G, Qi Z (2008) Effects of cholesterol levels on the excitability of rat hippocampal neurons. Mol Membr Biol 25:216–223

    Article  PubMed  CAS  Google Scholar 

  2. Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D’Arcangelo G (2008) Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol 212:407–414

    Article  PubMed  CAS  Google Scholar 

  3. Freeman LR, Granholm A-CE (2012) Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet. J Cereb Blood Flow Metab 32:643–653

    Article  PubMed  CAS  Google Scholar 

  4. Vliet PV (2012) Cholesterol and late-life cognitive decline. J Alzheimers Dis 30(Suppl 2):147–162

    Google Scholar 

  5. Ehrlich D, Pirchl M, Humpel C (2012) Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. Neuroscience 205:154–166

    Article  PubMed  CAS  Google Scholar 

  6. Umeda T, Tomiyama T, Kitajima E, Idomoto T, Nomura S, Lambert MP, Klein WL, Mori H (2012) Hypercholesterolemia accelerates intraneuronal accumulation of Abeta oligomers resulting in memory impairment in Alzheimer’s disease model mice. Life Sci 91:1169–1176

    Google Scholar 

  7. Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475–485

    Article  PubMed  CAS  Google Scholar 

  8. Li L, Cao D, Kim H, Lester R, Fukuchi K-I (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60:729–739

    Article  PubMed  CAS  Google Scholar 

  9. Dufour F, Liu Q-Y, Gusev P, Alkon D, Atzori M (2006) Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses. Brain Res 1103:88–98

    Article  PubMed  CAS  Google Scholar 

  10. Miller S, Wehner JM (1994) Cholesterol treatment facilitates spatial learning performance in DBA/2Ibg mice. Pharmacol Biochem Behav 49:257–261

    Article  PubMed  CAS  Google Scholar 

  11. Upchurch M, Wehner JM (1988) DBA/2Ibg mice are incapable of cholinergically-based learning in the Morris water task. Pharmacol Biochem Behav 29:325–329

    Article  PubMed  CAS  Google Scholar 

  12. Schreurs BG, Smith-Bell CA, Lochhead J, Sparks DL (2003) Cholesterol modifies classical conditioning of the rabbit (Oryctolagus cuniculus) nictitating membrane response. Behav Neurosci 117:1220–1232

    Article  PubMed  CAS  Google Scholar 

  13. Micale V, Scapagnini G, Colombrita C, Mazzola C, Alkon DL, Drago F (2008) Behavioral effects of dietary cholesterol in rats tested in experimental models of mild stress and cognition tasks. Eur Neuropsychopharmacol 18:462–471

    Article  PubMed  CAS  Google Scholar 

  14. Darwish DS, Wang D, Konat GW, Schreurs BG (2010) Dietary cholesterol impairs memory and memory increases brain cholesterol and sulfatide levels. Behav Neurosci 124:115–123

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan JR, Shively CA, Fontenot MB, Morgan TM, Howell SM, Manuck SB, Muldoon MF, Mann JJ (1994) Demonstration of an association among dietary cholesterol, central serotonergic activity, and social behavior in monkeys. Psychosom Med 56:479–484

    PubMed  CAS  Google Scholar 

  16. Faulks SC, Turner N, Else PL, Hulbert AJ (2006) Calorie restriction in mice: effects on body composition, daily activity, metabolic rate, mitochondrial reactive oxygen species production, and membrane fatty acid composition. J Gerontol A Biol Sci Med Sci 61:781–794

    Article  PubMed  Google Scholar 

  17. Matsuo N, Reijmers L, Mayford M (2008) Spine-type-specific recruitment of newly synthesized AMPA receptors with learning, vol 319. American Association for the Advancement of Science, Washington, DC

  18. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, Jones T, Zuo Y (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:915–919

    Article  PubMed  CAS  Google Scholar 

  19. Yang G, Pan F, Gan W-B (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462:920–924

    Article  PubMed  CAS  Google Scholar 

  20. Radwanska K, Medvedev NI, Pereira GS, Engmann O, Thiede N, Moraes MF, Villers A, Irvine EE, Maunganidze NS, Pyza EM, Ris L, Szymanska M, Lipinski M, Kaczmarek L, Stewart MG, Giese KP (2011) Mechanism for long-term memory formation when synaptic strengthening is impaired. Proc Natl Acad Sci USA 108:18471–18475

    Article  PubMed  CAS  Google Scholar 

  21. Bourne JN, Harris KM (2011) Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21:354–373

    Article  PubMed  CAS  Google Scholar 

  22. Babic M, Zinsmaier KE (2011) Memory, synapse stability, and β-adducin. Neuron 69:1039–1041

    Article  PubMed  CAS  Google Scholar 

  23. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  PubMed  CAS  Google Scholar 

  24. Hayakawa K, Mishima K, Nozako M, Hazekawa M, Aoyama Y, Ogata A, Harada K, Fujioka M, Abe K, Egashira N, Iwasaki K, Fujiwara M (2007) High-cholesterol feeding aggravates cerebral infarction via decreasing the CB1 receptor. Neurosci Lett 414:183–187

    Article  PubMed  CAS  Google Scholar 

  25. Tagliaferro P, Javier Ramos A, Onaivi ES, Evrard SG, Lujilde J, Brusco A (2006) Neuronal cytoskeleton and synaptic densities are altered after a chronic treatment with the cannabinoid receptor agonist WIN 55,212-2. Brain Res 1085:163–176

    Article  PubMed  CAS  Google Scholar 

  26. Carr TP, Jesch ED, Brown AW (2008) Endocannabinoids, metabolic regulation, and the role of diet. Nutr Res 28:641–650

    Article  PubMed  CAS  Google Scholar 

  27. Timofeeva E, Baraboi ED, Poulin AM, Richard D (2009) Palatable high-energy diet decreases the expression of cannabinoid type 1 receptor messenger rna in specific brain regions in the rat. J Neuroendocrinol 21:982–992

    Article  PubMed  CAS  Google Scholar 

  28. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  29. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  30. de Lima MN, Laranja DC, Bromberg E, Roesler R, Schroder N (2005) Pre- or post-training administration of the NMDA receptor blocker MK-801 impairs object recognition memory in rats. Behav Brain Res 156:139–143

    Article  PubMed  Google Scholar 

  31. Blalock EM, Chen K-C, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23:3807–3819

    PubMed  CAS  Google Scholar 

  32. Paxinos G (2004) The rat brain in stereotaxic coordinates/George Paxinos, Charles Watson. Elsevier Academic, London

    Google Scholar 

  33. Hou Y, Zhou L, Yang QD, Du XP, Li M, Yuan M, Zhou ZW (2012) Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience 200:120–129

    Article  PubMed  CAS  Google Scholar 

  34. Ya BL, Li CY, Zhang L, Wang W, Li L (2010) Cornel iridoid glycoside inhibits inflammation and apoptosis in brains of rats with focal cerebral ischemia. Neurochem Res 35:773–781

    Article  PubMed  CAS  Google Scholar 

  35. Mailman T, Hariharan M, Karten B (2011) Inhibition of neuronal cholesterol biosynthesis with lovastatin leads to impaired synaptic vesicle release even in the presence of lipoproteins or geranylgeraniol. J Neurochem 119:1002–1015

    Article  PubMed  CAS  Google Scholar 

  36. Maura H, Steve M, Dieter T, Ulf D, John W, Ingemar B (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain, vol 46. American Society for Biochemistry and Molecular Biology, Bethesda

  37. Ghribi O, Larsen B, Schrag M, Herman MM (2006) High cholesterol content in neurons increases BACE, beta-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp Neurol 200:460–467

    Article  PubMed  CAS  Google Scholar 

  38. Stupien G, Florian C, Roullet P (2003) Involvement of the hippocampal CA3-region in acquisition and in memory consolidation of spatial but not in object information in mice. Neurobiol Learn Mem 80:32–41

    Article  PubMed  Google Scholar 

  39. Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29:8206–8214

    Article  PubMed  CAS  Google Scholar 

  40. Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science 317:951–953

    Article  PubMed  CAS  Google Scholar 

  41. Harms KJ, Dunaevsky A (2007) Dendritic spine plasticity: looking beyond development. Brain Res 1184:65–71

    Article  PubMed  CAS  Google Scholar 

  42. Hu R, Cai WQ, Wu XG, Yang Z (2007) Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. Neuroscience 144:1229–1240

    Article  PubMed  CAS  Google Scholar 

  43. Kwon SE, Chapman ER (2011) Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron 70:847–854

    Article  PubMed  CAS  Google Scholar 

  44. Cheng XR, Yang Y, Zhou WX, Zhang YX (2011) Expression of VGLUTs contributes to degeneration and acquisition of learning and memory. Neurobiol Learn Mem 95:361–375

    Article  PubMed  CAS  Google Scholar 

  45. Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5:535–541

    PubMed  CAS  Google Scholar 

  46. Mullany PM, Lynch MA (1998) Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. NeuroReport 9:2489–2494

    Article  PubMed  CAS  Google Scholar 

  47. Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese TS (2011) PSD-95 is required to sustain the molecular organization of the postsynaptic density. J Neurosci 31:6329–6338

    Article  PubMed  CAS  Google Scholar 

  48. Fisar Z (2009) Phytocannabinoids and endocannabinoids. Curr Drug Abuse Rev 2:51–75

    Article  PubMed  CAS  Google Scholar 

  49. DiPatrizio NV, Simansky KJ (2008) Activating parabrachial cannabinoid CB1 receptors selectively stimulates feeding of palatable foods in rats. J Neurosci 28:9702–9709

    Article  PubMed  CAS  Google Scholar 

  50. Bari M, Battista N, Fezza F, Finazzi-Agro A, Maccarrone M (2005) Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J Biol Chem 280:12212–12220

    Article  PubMed  CAS  Google Scholar 

  51. Andersson H, D’Antona AM, Kendall DA, Von Heijne G, Chin C-N (2003) Membrane assembly of the cannabinoid receptor 1: impact of a long N-terminal tail. Mol Pharmacol 64:570–577

    Article  PubMed  CAS  Google Scholar 

  52. Hampson RE, Miller F, Palchik G, Deadwyler SA (2011) Cannabinoid receptor activation modifies NMDA receptor mediated release of intracellular calcium: implications for endocannabinoid control of hippocampal neural plasticity. Neuropharmacology 60:944–952

    Article  PubMed  CAS  Google Scholar 

  53. Albayram O, Alferink J, Pitsch J, Piyanova A, Neitzert K, Poppensieker K, Mauer D, Michel K, Legler A, Becker A, Monory K, Lutz B, Zimmer A, Bilkei-Gorzo A (2011) Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc Natl Acad Sci USA 108:11256–11261

    Article  PubMed  CAS  Google Scholar 

  54. Rivera P, Romero-Zerbo Y, Pavon FJ, Serrano A, Lopez-Avalos MD, Cifuentes M, Grondona JM, Bermudez-Silva FJ, Fernandez-Llebrez P, de Fonseca FR, Suarez J, Perez-Martin M (2011) Obesity-dependent cannabinoid modulation of proliferation in adult neurogenic regions. Eur J Neurosci 33:1577–1586

    Article  PubMed  Google Scholar 

  55. Rivera P, Luque-Rojas MJ, Pastor A, Blanco E, Pavón FJ, Serrano A, Crespillo A, Vida M, Grondona JM, Cifuentes M, Bermúdez-Silva FJ, de la Torre R, de Fonseca FR, Suárez J (2012) Diet-dependent modulation of hippocampal expression of endocannabinoid signaling-related proteins in cannabinoid antagonist-treated obese rats. Eur J Neurosci. doi:10.1111/ejn.12012

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 81070961); Natural Science Foundation of Shandong Province (No. ZR2009CL009).

Conflict of interest

We have no conflict of interest and certify hereby that this work has never been published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ya, Bl., Liu, Wy., Ge, F. et al. Dietary cholesterol alters memory and synaptic structural plasticity in young rat brain. Neurol Sci 34, 1355–1365 (2013). https://doi.org/10.1007/s10072-012-1241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1241-4

Keywords

Navigation