Skip to main content
Log in

Evaluating sub-clinical cognitive dysfunction and event-related potentials (P300) in clinically isolated syndrome

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objective

This study investigated the presence of sub-clinical cognitive dysfunction in patients with clinically isolated syndrome (CIS) and the abnormalities of cognitive event-related potentials (ERPs).

Methods

Subclinical cognitive dysfunction was assessed in 20 patients with CIS and in 20 healthy controls.

Results

Patients had impairments in verbal learning and long-term memory, evaluating attention, executive function and visuospatial skills, in decreasing order of frequency. SDLT and SIT were the most, and COWAT and BNT were the least affected tests. The N200 and P200 latencies were prolonged, and N100, N200 and P200 amplitudes were reduced in the patients relative to the controls, from the Fz, Cz and Pz electrode positions (p<0.05).

Conclusion

Detailed cognitive testing is valuable in determining subclinical cognitive dysfunction in CIS patients. ERP abnormalities as well as abnormalities in detailed cognitivetesting in patients with CIS are helpful in the diagnosis of sub-clinical cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fillipi M (2001) Magnetic resonance imaging findings predicting subsequent disease course in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neurol Sci 22:49–51

    Article  Google Scholar 

  2. Miller D, Barkhof F, Montalban X et al (2005) Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol 4:281–288

    Article  PubMed  Google Scholar 

  3. Schulz D, Kopp B, Kunkel A, Faiss JH (2006) Cognition in the early stage of multiple sclerosis. J Neurol 253:1002–1010

    Article  PubMed  Google Scholar 

  4. Kesselring J, Klement U (2001) Cognitive and affective disturbances in multiple sclerosis. J Neurol 248:180–183

    Article  PubMed  CAS  Google Scholar 

  5. Pinkston JB, Kablinger A, Alekseeva N (2007) Multiple sclerosis and behavior. Int Rev Neurobiol 79:323–339

    Article  PubMed  Google Scholar 

  6. Achiron A, Doniger GM, Harel Y et al (2007) Prolonged response times characterize cognitive performance in multiple sclerosis. Eur J Neurol 14:1102–1108

    Article  PubMed  CAS  Google Scholar 

  7. Huijbregts SCJ, Kalkers NF, de Sonneville LM et al (2006) Cognitive impairment and decline in different MS subtypes. J Neurol Sci 245:187–194

    Article  PubMed  Google Scholar 

  8. Piras MR, Magnano I, Canu EDG et al (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74:878–885

    Article  PubMed  CAS  Google Scholar 

  9. Hohol MJ, Guttmann CR, Orav J et al (1997) Serial neuropsychological assessment and magnetic resonance imaging analysis in multiple sclerosis. Arch Neurol 54:1018–1025

    PubMed  CAS  Google Scholar 

  10. Feinstein A, Kartsounis LD, Miller DH et al (1992) Clinically isolated lesions of the type seen in multiple sclerosis: a cognitive, psychiatric, and MRI follow up study. J Neurol Neurosurg Psychiatry 55:869–876

    Article  PubMed  CAS  Google Scholar 

  11. Glanz BI, Holland CM, Gauthier SA et al (2007) Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler 13:1004–1010

    Article  PubMed  CAS  Google Scholar 

  12. Ellger T, Bethke F, Frese A et al (2002) Event-related potentials in different subtypes of multiple sclerosis: a cross-sectional study. J Neurol Sci 205:35–40

    Article  PubMed  Google Scholar 

  13. Honig LS, Ramsay RE, Sheremata WA (1992) Event-related potential P300 in multiple sclerosis. Relation to magnetic resonance imaging and cognitive impairment. Arch Neurol 49:44–50

    PubMed  CAS  Google Scholar 

  14. Triantafyllou NI, Voumvourakis K, Zalonis I et al (1992) Cognition in relapsing-remitting multiple sclerosis: a multichannel event-related potential (P300) study. Acta Neurol Scand 85:10–13

    Article  PubMed  CAS  Google Scholar 

  15. Casanova-Gonzalez MF, Cabrera-Gomez JA, Aquino-Cias J et al (1999) Neurophysiological assessment in patients with clinically defined multiple sclerosis with special reference to P300 wave study. Rev Neurol 29:1134–1137

    PubMed  CAS  Google Scholar 

  16. Magnie MN, Bensa C, Laloux L et al (2007) Contribution of cognitive evoked potentials for detecting early cognitive disorders in multiple sclerosis. Rev Neurol 163:1065–1074

    Article  PubMed  CAS  Google Scholar 

  17. Van Dijk JG, Jennekens-Schinkel A, Caekebeke JF, Zwinderman AH (1992) Are event-related potentials in multiple sclerosis indicative of cognitive impairment? Evoked and event-related potentials, psychometric testing and response speed: a controlled study. J Neurol Sci 109:18–24

    Article  PubMed  Google Scholar 

  18. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  19. Benton AL, Spreen O, Varney NR, Hamsher KdeS (1983) Contributions to neuropsychological assessment: a clinical manual. Oxford University Press, Oxford

    Google Scholar 

  20. Bush RM, Frazier TW, Haggerty KA, Kubu CS (2005) Utility of the Boston naming test in predicting ultimate side of surgery in patients with medically intractable temporal lobe epilepsy. Epilepsia 46:1773–1779

    Article  Google Scholar 

  21. Grammaldo LG, Giampa T, Quarato PP et al (2006) Lateralizing value of memory tests in drug-resistant temporal lobe epilepsy. Eur J Neurol 13:371–376

    Article  PubMed  CAS  Google Scholar 

  22. Karakas S, Eski R, Oktem-Tanor O et al (2004) Sayi dizisi ö renme testi, çizgi yönünü belirleme testi, i aretleme testi, Raven standart progresif matrisler testi uygulama ve puanlama yönergesi. In: Karakas S (ed) Bilrot bataryasi el kitabi: Noropsikolojik testler icin arastirma ve gelistirme calismalari. Dizayn Ofset, Ankara, pp 257–302

  23. Bland JM, Altman DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310:170

    PubMed  CAS  Google Scholar 

  24. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  25. Thornton AE, Raz N, Tucker KA (2002) Memory in multiple sclerosis: contex-tual encodings deficits. J Int Neuropsychol Soc 8:395–409

    Article  PubMed  Google Scholar 

  26. Williams J, O’Rourke K, Hutchinson M, Tubridy N (2006) The Face-Symbol Test and The Symbol-Digit Test are not reliable surrogates for the Paced Auditory Serial Addition Test in multiple sclerosis. Mult Scler 12:599–604

    Article  PubMed  CAS  Google Scholar 

  27. Amato MP, Portaccio E, Goretti B et al (2006) The Rao’s Brief Repeatable Battery and Stroop test: normative values with age, education and gender corrections in an Italian population. Mult Scler 12:786–793

    Article  Google Scholar 

  28. Dalton CM, Chard DT, Davies GR et al (2004) Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 127:1101–1107

    Article  PubMed  Google Scholar 

  29. Zivadinov R, Sepcic J, Nasuelli D et al (2001) A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 70:773–780

    Article  PubMed  CAS  Google Scholar 

  30. Calabrese M, Atzori M, Bernardi V et al (2007) Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol 254:1212–1220

    Article  PubMed  Google Scholar 

  31. Locatelli L, Zivadinov R, Grop A, Zorzon M (2004) Frontal paren chymal atrophy measures in multiple sclerosis. Mult Scler 10:562–568

    Article  PubMed  Google Scholar 

  32. Gil R, Zai L, Neau JP et al (1993) Event-related auditory evoked potentials and multiple sclerosis. Electroencephalogr Clin Neurophysiol 88:182–187

    Article  PubMed  CAS  Google Scholar 

  33. Giesser BS, Schroeder MM, LaRocca NG et al (1992) Endogenous event-related potentials as indices of dementia in multiple sclerosis patients. Electroencephalogr Clin Neuro - physiol 82:320–329

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belgin Kocer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocer, B., Unal, T., Nazliel, B. et al. Evaluating sub-clinical cognitive dysfunction and event-related potentials (P300) in clinically isolated syndrome. Neurol Sci 29, 435–444 (2008). https://doi.org/10.1007/s10072-008-1020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-008-1020-4

Keywords

Navigation