Skip to main content
Log in

Bacteriophage control of Salmonella Typhimurium in milk

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was designed to evaluate the effect of bacteriophage P22 on the inhibition of growth of Salmonella Typhimurium. The P22 belongs to Podoviridae family consisting of a hexagonal head and short tail. The inhibitory effect of phage in milk was noticeable at the early storage period, showing more than 3 log reduction at 4 h and day 3. The pH values of milk treated with P22 were significantly decreased from 6.7 to 6.3 after 24 h incubation at 37 °C, while no significant changes in pH values were observed for the control and bacteriophage treatment throughout the storage at 4 °C for 12 days. The slight color changes were observed in the control and bacteriophage treatment throughout the storage at 4 °C for 12 days and 37 °C for 24 h. These results provide useful information for enhancing microbiological safety and quality of milk and designing effective bacteriophage-based control in food system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R. Bio-control of Salmonella Enteritidis in foods using bacteriophages. Viruses 7: 2847 (2015)

    Google Scholar 

  • BermÚDez-Aguirre D, Mawson R, Versteeg K, Barbosa-CÁNovas GV. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonification treatments. J. Food Qual. 32: 283–302 (2009)

    Article  Google Scholar 

  • Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3: 362–377 (2000)

    Article  Google Scholar 

  • Eng S-K, Pusparajah P, Ab Mutalib N-S, Ser H-L, Chan K-G, Lee L-H. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 8: 284–293 (2015)

    Article  CAS  Google Scholar 

  • Erskine JM. Adsorption of lactic Streptococcal bacteriophage by milk proteins. J. Dairy Sci. 53: 861–864 (1970)

    Article  Google Scholar 

  • Faille C, Cunault C, Dubois T, Bénézech T. Hygienic design of food processing lines to mitigate the risk of bacterial food contamination with respect to environmental concerns. Innov. Food Sci. Emerg. Technol. 46: 65–73 (2017)

    Google Scholar 

  • García P, Martínez B, Obeso JM, Rodríguez A. Bacteriophages and their application in food safety. Lett. Appl. Microbiol. 47: 479–485 (2008)

    Article  Google Scholar 

  • Giladi H, Goldenberg D, Koby S, Oppenheim AB. Enhanced activity of the bacteriophage lambda PL promoter at low temperature. Proc. Nat. Acad. Sci. 92: 2184–2188 (1995)

    Article  CAS  Google Scholar 

  • Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int. J. Food Microbiol. 154: 66–72 (2012)

    Article  Google Scholar 

  • Kim J, Jo A, Ding T, Lee H-Y, Ahn J. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium. Arch. Microbiol. 198: 521–529 (2016)

    Article  CAS  Google Scholar 

  • Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317–327 (2010)

    Article  CAS  Google Scholar 

  • Lee S, Kim MG, Lee HS, Heo S, Kwon M, Kim G-B. Isolation and characterization of Listeria phages for control of growth of Listeria monocytogenes in milk. Korean J. Food Sci. Anim. Resour. 37: 320–328 (2017)

    Article  CAS  Google Scholar 

  • Modi R, Hirvi Y, Hill A, Griffiths MW. Effec of phage on survival of Salmonella Enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J. Food Prot. 64: 927–933 (2001)

    Article  CAS  Google Scholar 

  • Mungai EA, Behravesh C, Gould L. Increased outbreaks associated with nonpasteurized milk, United States, 2007–2012. Emerg. Infect. Dis. 21: 119–122 (2015)

    Article  CAS  Google Scholar 

  • O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP. Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett. Appl. Microbiol. 41: 274–279 (2005)

    Article  Google Scholar 

  • Olsen SJ, Ying M, Davis MF, Deasy M, Holland B, Iampietro L, Baysinger CM, Sassano F, Polk LD, Gormley B, Hung MJ, Pilot K, Orsini M, Van Duyne S, Rankin S, Genese C, Bresnitz EA, Smucker J, Moll M, Sobel J. Multidrug-resistant Salmonella Typhimurium infection from milk contaminated after pasteurization. Emerg. Infect. Dis. 10: 932–935 (2004)

    Article  Google Scholar 

  • Owens SL, Brewer JL, Rankin SA. Influence of bacterial cell population and pH on the color of nonfat milk. LWT-Food Sci. Technol. 34: 329–333 (2001)

    Article  CAS  Google Scholar 

  • Rakhuba DV, Kolomiets EI, Dey ES, Novik GI. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J. Microbiol. 59: 145–155 (2010)

    Article  CAS  Google Scholar 

  • Smadi H, Sargeant JM, Shannon HS, Raina P. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: Mixed effect meta-analysis. J. Epidemiol. Global Health 2: 165–179 (2012)

    Article  Google Scholar 

  • Strydom A, Witthuhn CR. Listeria monocytogenes: A target for bacteriophage biocontrol. Comprehen. Rev. Food Sci. Food Saf. 14: 694–704 (2015)

    Article  Google Scholar 

  • Thung TY, Jayarukshi K, Premarathne K, Mudiyanselage J, San Chang W, Loo YY, Chin YZ, Kuan CH, Tan CW, Basri DF, Jasimah Wan Mohamed Radzi CW, Radu S. Use of a lytic bacteriophage to control Salmonella Enteritidis in retail food. LWT-Food Sci. Technol. 78: 222–225 (2017)

    CAS  Google Scholar 

  • Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F. Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int. J. Food Microbiol. 145: 37–42 (2011)

    Article  Google Scholar 

  • Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, Ho YW. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int. J. Food Microbiol. 172: 92–101 (2014)

    Article  CAS  Google Scholar 

  • Zinno P, Devirgiliis C, Ercolini D, Ongeng D, Mauriello G. Bacteriophage P22 to challenge Salmonella in foods. Int. J. Food Microbiol. 191: 69–74 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B01008304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhee Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phongtang, W., Choi, GP., Chukeatirote, E. et al. Bacteriophage control of Salmonella Typhimurium in milk. Food Sci Biotechnol 28, 297–301 (2019). https://doi.org/10.1007/s10068-018-0446-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0446-6

Keywords

Navigation