Skip to main content
Log in

Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The enzymatic activity and partial characterization of proteases from Bromelia karatas fruits were evaluated and compared with Bromelia pinguin proteases. The specific activity increased twofold after partial purification in both proteases. Partially purified proteases from Bromelia karatas showed good specific activity at pH 6.0–8.0 and residual activity of 70–100% for 60 min at 37–60 °C, similar to Bromelia pinguin proteases. The K m value of proteases from Bromelia karatas was higher (253.32 µM) than that of Bromelia pinguin proteases (234.94 µM). The use of specific protease inhibitors indicated the presence of cysteine and serine proteases. Proteases with molecular weight of 66.2–97 and 21–31 kDa were detected. Bromelia karatas proteases registered 73% hydrolysis using a soy protein concentrate, similar to the enzyme activity of Bromelia pinguin proteases and commercial bromelain. These results demonstrate that Bromelia karatas proteases could be a potential alternative protease in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hornung-Leoni CTH. Bromeliads: traditional plant food in Latin America since prehispanic times. Polibotánica. 32: 219–229 (2011).

    Google Scholar 

  2. Montes C, Amador M, Cuevas D, Córdoba F. Subunit structure of karatasin, the proteinase isolated from Bromelia plumier (karatas). Agric. Biol. Chem. 54: 17–24 (1990).

    Article  CAS  Google Scholar 

  3. Moyano D, Osorio M, Murillo E, Murillo W, Solanilla J, Méndez J, Aristizabal J. Evaluación de parámetros bromatológicos, fitoquímicos y funcionalidad antioxidante de frutos de Bromelia karatas (Bromeliaceae). Vitae 19: S439–S441 (2012).

    Google Scholar 

  4. González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, del Carmen Oliver-Salvador M. Production of plant proteases in vivo and in vitro—a review. Biotechnol. Adv. 29: 983–996 (2011).

    Article  Google Scholar 

  5. Moreno-Hernández JM, Hernández-Mancillas XD, Navarrete ELC, Mazorra-Manzano MA, Osuna-Ruiz I, Rodríguez-Tirado VA, Salazar-Leyva JA. Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. fruit grown in Mexico. Appl. Biochem. Biotechnol. 182: 181–196 (2017).

    Article  Google Scholar 

  6. Toro-Goyco E, Maretzki A, Matos ML. Isolation, purification, and partial characterization of pinguinain, the proteolytic enzyme from Bromelia pinguin L. Arch. Biochem. Biophys. 126: 91–104 (1968).

    Article  CAS  Google Scholar 

  7. Payrol JA, Obregón WD, Natalucci CL, Caffini NO. Reinvestigation of the proteolytically active components of Bromelia pinguin fruit. Fitoterapia 76: 540–548 (2005).

    Article  CAS  Google Scholar 

  8. Payrol JA, Obregón WD, Trejo SA, Caffini NO. Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. Protein J. 27: 88–96 (2008).

    Article  CAS  Google Scholar 

  9. Nam SH, Kim YM, Walsh MK, Yim SH, Eun JB. Functional characterization of purified pear protease and its proteolytic activities with casein and myofibrillar proteins. Food Sci. Biotechnol. 25: 31–39 (2016).

    Article  CAS  Google Scholar 

  10. Pardo MF, López LM, Canals F, Avilés FX, Natalucci CL, Caffini NO. Purification of balansain I, an endopeptidase from unripe fruits of Bromelia balansae Mez (Bromeliaceae). J. Agric. Food Chem. 48: 3795–3800 (2000).

    Article  CAS  Google Scholar 

  11. Pavan R, Jain S, Kumar A. Properties and therapeutic application of bromelain: a review. Biotechnol. Res. Int. 1: 1–6 (2012).

    Article  Google Scholar 

  12. Pardo MF, López LM, Caffini NO, Natalucci CL. Properties of a milk clotting protease isolated from fruits of Bromelia balansae Mez. Biol. Chem. 382: 871–874 (2001).

    Article  CAS  Google Scholar 

  13. López LM, Sequeiros C, Natalucci CL, Brullo A, Maras B, Barra D, Caffini NO. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Expr. Purif. 18: 133–140 (2000).

    Article  Google Scholar 

  14. Vallés D, Furtado S, Cantera A. Characterization of news proteolytic enzymes from ripe fruits of Bromelia antiacantha Bertol.(Bromeliaceae). Enzyme Microb. Technol. 40: 409–413 (2007).

    Article  Google Scholar 

  15. Singh LR, Devi TP, Devi SK. Purification and characterization of a pineapple crown leaf thiol protease. Prep. Biochem. Biotechnol. 34: 25–43 (2004).

    Article  CAS  Google Scholar 

  16. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976).

    Article  CAS  Google Scholar 

  17. Natalucci CL, Brullo A, López LMI, Hilal RM, Caffini NO. Macrodontain, a new protease isolated from fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). J. Food Biochem. 19: 443–454 (1996).

    Article  CAS  Google Scholar 

  18. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666 (1934).

    Article  CAS  Google Scholar 

  19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    Article  CAS  Google Scholar 

  20. Kim SY, Park PW, Rhee KC. Functional properties of proteolytic enzyme modified soy protein isolate. J. Agric. Food Chem. 38: 651–656 (1990).

    Article  CAS  Google Scholar 

  21. Hernández M, Chávez M, Márquez M, Rodríguez G, Santos R, González J, Carvajal C. Proceso de obtención de bromelina a partir de tallos de piña. Cubane Patent C12 N 9/50, Dic 23. (1997).

  22. Headon DR, Walsh G. The industrial production of enzymes. Biotechnol. Adv. 12: 635–646 (1994).

    Article  CAS  Google Scholar 

  23. Andrade de MJ, Toledo TT, Nogueira SB, Cordenunsi BR, Lajolo FM, do Nascimento JRO. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. J. Proteomics 75: 3331–3341 (2012).

    Article  CAS  Google Scholar 

  24. Bruno MA, Pardo MF, Caffini NO, Lopez LM. Purification of a new endopeptidase isolated from fruits of Bromelia hieronymi Mez (Bromeliaceae). Acta Farm. Bonaerense 21: 51–56 (2002).

    CAS  Google Scholar 

  25. Bruno MA, Trejo SA, Aviles XF, Caffini NO, Lopez LM. Isolation and characterization of hieronymain II, another peptidase isolated from fruits of Bromelia hieronymi Mez (Bromeliaceae). Protein J. 25: 224–231 (2006).

    Article  CAS  Google Scholar 

  26. Corzo CA, Waliszewski KN, Welti-Chanes J. Pineapple fruit bromelain affinity to different protein substrates. Food Chem. 133: 631–635 (2012).

    Article  CAS  Google Scholar 

  27. Bruno MA, Trejo SA, Caffini NO, López LM. Purification and characterization of hieronymain III. Comparison with other proteases previously isolated from Bromelia hieronymi Mez. Protein J. 27: 426–433 (2008).

    Article  CAS  Google Scholar 

  28. Pérez A, Carvajal C, Trejo S, Torres MJ, Martin MI, Lorenzo JC, Natalucci CL, Hernández M. Penduliflorain I: a cysteine protease isolated from Hohenbergia penduliflora (A.Rich.) Mez (Bromeliaceae). Protein J. 29: 225–233 (2010).

    Article  Google Scholar 

  29. Singh VK, Patel AK, Moir AJ, Jagannadham MV. Indicain, a dimeric serine protease from Morus indica cv. K2. Phytochemistry 69: 2110–2119 (2008).

    Article  CAS  Google Scholar 

  30. Arthur J, Mikles L. Calpain zymography with casein or fluorescein isothiocyanate casein. Methods Mol. Biol. 144: 109–116 (2000).

    CAS  Google Scholar 

  31. Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Millán F. Partially hydrolyzed rapeseed protein isolates with improved functional properties. J. Am. Oil Chem. Soc. 77: 447–450 (2000).

    Article  CAS  Google Scholar 

  32. Vioque J, Predoche J, Yust MM, Lqari H, Megías C, Girón-Calle J, Aliaz M, Millán F. Peptídeos bioativos em proteínas vegetais de reserva. Brazilian J. Food Tech. 3: 99–102 (2006).

    Google Scholar 

  33. Oseguera-Toledo ME, de Mejia EG, Amaya-Llano SL. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 76: 839–851 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Tecnológico Nacional de Mexico (Grant No. 5613.15-P) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efigenia Montalvo-González.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meza-Espinoza, L., de los Ángeles Vivar-Vera, M., de Lourdes García-Magaña, M. et al. Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases. Food Sci Biotechnol 27, 509–517 (2018). https://doi.org/10.1007/s10068-017-0244-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0244-6

Keywords

Navigation