Skip to main content
Log in

Cell surface properties and biofilm formation of pathogenic bacteria

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cell surface properties of slime production, cell hydrophobicity (CH), colony spreading, auto-aggregation, and biofilm formation (BF) of pathogens were investigated. Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes generally formed strong biofilms and were positive slime producers. The extracellular polymeric substances isolated from agar-grown biofilms of Bacillus cereus and P. aeruginosa contained a high proportion of carbohydrates, proteins, and extracellular DNA. High levels of CH were observed for all pathogens when hydrocarbons were combined with ammonium sulfate (AS). Levels of hydrophobicity based on bacterial adhesion to hydrocarbons using nonane with AS were positively correlated with hydrophobic interaction chromatography assay and contact-angle measurement results. BF and CH values of all pathogens, except E. coli O157:H7 and B. cereus, were highly correlated. Levels of pathogen hydrophobicity differed depending on the measurement method. Factors affecting BF were different depending upon the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sorongon ML, Bloodgood RA, Burchard RP. Hydrophobicity adhesion and surface-exposed proteins of gliding bacteria. Appl. Environ. Microb. 57: 3193–3199 (1991)

    CAS  Google Scholar 

  2. Kim H, Ryu JH, Beuchat LR. Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microb. 72: 5846–5856 (2006)

    Article  CAS  Google Scholar 

  3. Vatsos IN, Thompson KD, Adams A. Adhesion of the pathogen Flavobacterium psychrophilum to unfertilized eggs of rainbow trout (Oncorhynchus mykiss) and n-hexadecane. Lett. Appl. Microbiol. 33: 178–182 (2001)

    Article  CAS  Google Scholar 

  4. Molin S, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotech. 14: 255–261 (2003)

    Article  CAS  Google Scholar 

  5. Finkel SE, Kolter R. DNA as a nutrient: Novel role for bacterialcompetence gene homologs. J. Bacteriol. 183: 6288–6293 (2001)

    Article  CAS  Google Scholar 

  6. Ren TJ, Frank JF. Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quaternary ammonium sanitizer as determined by direct viable and agar plate counts. J. Food Protect. 56: 573–576 (1993)

    CAS  Google Scholar 

  7. Ukuku DO, Fett WF. Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. J. Food Protect. 65: 1093–1099 (2002)

    Google Scholar 

  8. Cloete E, Van Der Merwe A, Richards M. Biofilms in the Food and Beverage Industries: An introduction. pp. 1–41. In: Biofilms in the Food and Beverage Industries. Fratamico PM, Annous BA, Guenther NW (eds). CRC Press, Inc., Boca Raton, FL, USA (2009)

    Google Scholar 

  9. Gallardo-Moreno AM, González-Martín ML, Pérez-Giraldo C, Bruque JM, Gómez-García AC. Serum as a factor influencing adhesion of Enterococcus faecalis to glass and silicone. Appl. Environ. Microb. 68: 5784–5787 (2002)

    Article  CAS  Google Scholar 

  10. Goulter RM, Gentle IR, Dykes GA. Characterisation of curli production, cell surface hydrophobicity, autoaggregation and attachment behavior of Escherichia coli O157. Curr. Microbiol. 61: 157–162 (2010)

    Article  CAS  Google Scholar 

  11. Chia TWR, Fegan N, McMeekin TA, Dykes GA. Salmonella Sofia differs from other poultry-associated Salmonella serovars with respect to cell surface hydrophobicity. J. Food Protect. 71: 2421–2428 (2008)

    CAS  Google Scholar 

  12. Rivas L, Fegan N, Dykes GA. Expression and putative roles in attachment of outer membrane proteins of Escherichia coli O157 from planktonic and sessile culture. Foodborne Pathog. Dis. 5: 155–164 (2008)

    Article  CAS  Google Scholar 

  13. Fett WF. Relationship of bacterial cell surface hydrophobicity and charge to pathogenicity, physiologic race, and immobiolozation in attached soybean leaves. Phytopathology 75: 1414–1418 (1985)

    Article  Google Scholar 

  14. Benito Y, Pin C, Marin ML, Garcia ML, Selgas MD, Casas C. Cell surface hydrophobicity and attachment of pathogenic and spoilage bacteria to meat surfaces. Meat Sci. 45: 419–425 (1997)

    Article  CAS  Google Scholar 

  15. Bouttier S, Linxe C, Ntsama C, Morgant G, Bellon-Fontaine MN, Fourniat J. Attachment of Salmonella choleraesuis to beef muscle and adipose tissues. J. Food Protect. 60: 16–22 (1997)

    CAS  Google Scholar 

  16. Liu Y, Yang SF, Li Y, Xu H, Qin L, Tay JH. The influence of cell and substratum surface hydrophobicites on microbial attachment. J. Biotechnol. 110: 251–256 (2004)

    Article  CAS  Google Scholar 

  17. Hassan AN, Frank JF. Attachment of Escherichia coli O157:H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production. Int. J. Food Microbiol. 96: 103–109 (2004)

    Article  CAS  Google Scholar 

  18. Wingender J, Strathmann M, Rode A, Leis A, Flemming HC. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Method. Enzymol. 336: 302–314 (2001)

    Article  CAS  Google Scholar 

  19. Branda SS, Vike S, Friedman L, Kolter R. Biofilms: The matrix revisited. Trends Microbiol. 13: 20–26 (2005)

    Article  CAS  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton K, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  21. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 42: 872–874 (1989)

    Article  CAS  Google Scholar 

  22. Collado MC, Meriuoto J, Salminen S. Adhesion and aggregation properties of probiotic and pathogen strains. Eur. Food Res. Technol. 226: 1065–1073 (2008)

    Article  CAS  Google Scholar 

  23. Kos B, Šuškovic J, Vukovic S, Šimpraga M, Frece J, Matošic S. Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94: 981–987 (2003)

    Article  CAS  Google Scholar 

  24. Arciola CR, Campoccia D, Gamberini S, Cervellati M, Donati E, Montanaro L. Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials 23: 4233–4239 (2002)

    Article  CAS  Google Scholar 

  25. Blackman IC, Frank JF. Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J. Food Protect. 59: 827–831 (1996)

    Google Scholar 

  26. Poulsen LV. Microbial biofilm in food processing. LWT-Food Sci. Technol. 32: 321–326 (1999)

    Article  CAS  Google Scholar 

  27. Peng JS, Tsai WC, Chou CC. Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 77: 11–18 (2002)

    Article  CAS  Google Scholar 

  28. Ahimou F, Jacques P, Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb. Tech. 27: 749–754 (2000)

    Article  CAS  Google Scholar 

  29. Makin SA, Beveridge TJ. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142: 299–307 (1996)

    Article  CAS  Google Scholar 

  30. Karunakaran E, Biggs CA. Mechanisms of Bacillus cereus biofilm formation; An investigation of the physicochemical characteristics of cell surface and extracellular proteins. Appl. Microbiol. Biot. 89: 1161–1175 (2011)

    Article  CAS  Google Scholar 

  31. Jana TK, Srivastava AK, Csery K, Arora DK. Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can. J. Microbiol. 46: 28–37 (1999)

    Article  Google Scholar 

  32. Dillon JK, Fuerst JA, Hayward AC, Davis GHG. A comparison of five methods for assaying bacterial hydrophobicity. J. Microbiol. Meth. 6: 13–19 (1986)

    Article  CAS  Google Scholar 

  33. Kupfer D, Zusman DR. Changes in cell surface hydrohpobicity of Myxococcus xanthus are correlated with sporulation related events in the developmental program. J. Bacteriol. 159: 776–779 (1984)

    CAS  Google Scholar 

  34. van der Mei HC, Weerkamp AH, Busscher HJ. A comparison of various methods to determine hydrophobic properties of streptococcal cell surface. J. Microbiol. Meth. 6: 277–278 (1987)

    Article  Google Scholar 

  35. Rosenberg M. Ammonium sulphate enhances adherence of Escherichia coli J-5 to hydrocarbon and polystyrene. FEMS Microbiol. Lett. 25: 41–45 (1984)

    Article  CAS  Google Scholar 

  36. Hamadi F, Latrache H. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface. Colloid. Surface. B. 65: 134–139 (2008)

    Article  CAS  Google Scholar 

  37. Ahimou F, Paquot M, Jacques P, Thonart P, Rouxhet PG. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. J. Microbiol. Meth. 45: 119–126 (2001)

    Article  CAS  Google Scholar 

  38. Wang TB, Han JZ. The role of probiotic cell wall hydrophobicity in bioremediation of aquaculture. Aquaculture 269: 349–354 (2007)

    Article  CAS  Google Scholar 

  39. Huisman GW, Siegele DA, Zambrano MM, Kolter R. Morphological and physiological changes during stationary phase. pp. 1672–1682. In: Escherichia coli and Salmonella: Cellular and molecular biology. Neidhardt FC (ed). ASM Press, Washington, D.C., USA (1996)

    Google Scholar 

  40. Auger S, Ramarao N, Faille C, Fouet A, Aymerich S, Gohar M. Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microb. 75: 6616–6618 (2009)

    Article  CAS  Google Scholar 

  41. Rad AY, Ayhan H, Piskin E. Adhesion of different bacterial strains to low temperature plasma treated sutures. J. Biomed. Mater. Res. 41: 349–358 (1998)

    Article  CAS  Google Scholar 

  42. Kolenbrander PE. Oral microbial communities: Biofilms interactions and genetic systems. Ann. Rev. Microbiol. 54: 413–437 (2000)

    Article  CAS  Google Scholar 

  43. Rickard AH, McBain AJ, Stead AT, Gillberg P. Shear rate moderates community diversity in freshwater biofilms. Appl. Environ. Microb. 70: 7426–7435 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, NY., Bae, YM. & Lee, SY. Cell surface properties and biofilm formation of pathogenic bacteria. Food Sci Biotechnol 24, 2257–2264 (2015). https://doi.org/10.1007/s10068-015-0301-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0301-y

Keywords

Navigation