Skip to main content
Log in

Effect of germination and incubation on Zn, Fe, and Ca bioavailability values of soybeans (Glycine max L.) and mung beans (Vigna radiate L.)

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Phytase/phosphatase activities, the phytic acid content, and Zn, Fe, and Ca bioavailability values of 4-d-germinated soybeans and mung beans were investigated. Phytase and phosphatase activities of germinated soybeans and mung beans both increased, compared with raw beans. The phytic acid contents declined in germinated soybeans by 57.5% and in mung beans by 76.0%. Zn and Fe bioavailability values increased in germinated beans and Ca bioavailability decreased. For incubation, the highest bioavailability values of Zn, Fe, and Ca, respectively, were achieved using an exogenous phytase treatment in mung beans (47.6, 44.6, and 51.5%). Soybeans exhibited values of 64.7, 60.6, and 47.9%, respectively, after a combined treatment with endogenous and exogenous phytases. Germination improves Zn and Fe bioavailability values of beans by increasing enzyme activity, but is time-consuming. Incubation is more efficient for improvement of Zn, Fe, and Ca bioavailability values in a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ji H, Chen J, Lu D. Nutrition value and comprehensive utilization of mung beans. Prog. Mod. Biomed. 6: 143–156 (2006)

    Google Scholar 

  2. Huang X, Cai W, Xu B. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chem. 143: 268–276 (2014)

    Article  CAS  Google Scholar 

  3. Greiner R, Konietzny U. Phytase for food application. Food Technol. Biotech. 44: 125–140 (2006)

    CAS  Google Scholar 

  4. Kumar V, Sinha AK, Makkar HPS, Becker K. Dietary roles of phytate and phytase in human nutrition: A review. Food Chem. 120: 945–959 (2010)

    Article  CAS  Google Scholar 

  5. Schlemmer U, Frølich W, Prieto RM, Grases F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 53: S330–S375 (2009)

    Article  Google Scholar 

  6. Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E. Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. J. Agr. Food Chem. 53: 10285–10290 (2005)

    Article  CAS  Google Scholar 

  7. Raboy V. Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci. 177: 281–296 (2009)

    Article  CAS  Google Scholar 

  8. El-Adawy T. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Food. Hum. Nutr. 57: 83–97 (2002)

    Article  CAS  Google Scholar 

  9. Khattab RY, Arntfield SD. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT-Food Sci. Technol. 42: 1113–1118 (2009)

    Article  CAS  Google Scholar 

  10. Bau HM, Villaume C, Nicolas JP, Méjean L. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agr. 73: 1–9 (1997)

    Article  CAS  Google Scholar 

  11. Lee CK, Karunanithy R. Effects of germination on the chemical composition of Glycine and Phaseolus beans. J. Sci. Food Agr. 51: 437–445 (1990)

    Article  CAS  Google Scholar 

  12. Ma G, Li Y, Jin Y, Zhai F, Kok F, Yang X. Phytate intake and molar ratios o f phytate to zinc, iron and calcium in the diets of poople in China. Eur. J. Clin. Nutr. 61: 368–374 (2007)

    Article  CAS  Google Scholar 

  13. Chen P, Toribara J, Warner H. Microdetermination of phosphorus. Anal. Chem. 28: 1756–1758 (1956)

    Article  CAS  Google Scholar 

  14. Chiera JM, Finer JJ, Grabau EA. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Mol. Biol. 56: 895–904 (2004)

    Article  CAS  Google Scholar 

  15. Yang RQ, Guo QH, Gu ZX. GABA shunt and polyamine degradation pathway on gamma-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia. Food Chem. 136: 152–159 (2013)

    Article  CAS  Google Scholar 

  16. Liao H, Wong FL, Phang TH, Cheung MY, Li WY, Shao GH, Yan XL, Lam HM. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene 318: 103–111 (2003)

    Article  CAS  Google Scholar 

  17. Kiers JL, Nout RMJ, Rombouts FM. In vitro digestibility of processed and fermented soya bean, cowpea and maize. J. Sci. Food Agr. 80: 1325–1331 (2000)

    Article  CAS  Google Scholar 

  18. Mubarak AE. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem. 89: 489–495 (2005)

    Article  CAS  Google Scholar 

  19. Lestienne I, Icard-Vernière C, Mouquet C, Picq C, Trèche S. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 89: 421–425 (2005)

    Article  CAS  Google Scholar 

  20. Afify Ael-M, El-Beltagi HS, El-Salam SM, Omran AA. Bioavailability of iron zinc phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE 6: e25512 (2011)

    Article  CAS  Google Scholar 

  21. Saharan K, Khetarpaul N, Bishnoi S. HCl-extractability of minerals from rice bean and faba bean: Influence of domestic processing methods. Innov. Food Sci. Emerg. 2: 323–325 (2001)

    Article  CAS  Google Scholar 

  22. Khalil MM. Effect of soaking, germination, autoclaving and cooking on chemical and biological value of guar compared with faba bean. Mol. Nutr. Food Res. 45: 246–250 (2001)

    CAS  Google Scholar 

  23. Liang JF, Han BZ, Nout MJ, Hamer RJ. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China. Int. J. Food Sci. Nutr. 61: 40–51 (2010)

    Article  CAS  Google Scholar 

  24. Grewal A, Jood S. Effect of processing treatments on nutritional and antinutritional contents of green gram. J. Food Biochem. 30: 535–546 (2006)

    Article  CAS  Google Scholar 

  25. Zhang S, Dong L, Luan N, Zhou W, Yin Y, Zhao C. Study on the content change of dissociative metal ion by ICP-AES during barely malt production added phytase. Sci. Technol. Food Ind. 33: 384–386 (2012)

    Google Scholar 

  26. Sandberg AS, Svanberg U. Phytate hydrolysis by phytase in cereals: Effects on in vitro estimation of iron availability. J. Food Sci. 56: 1330–1333 (1991)

    Article  CAS  Google Scholar 

  27. Frias J, Doblado R, Antezana JR, Vidal-Valverde C. Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem. 81: 233–239 (2003)

    Article  CAS  Google Scholar 

  28. Luo YW, Xie WH. Effect of phytase treatment on iron bioavailability in faba bean (Vicia faba L.) flour. Food Chem. 134: 1251–1255 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxin Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, R., Jin, X. et al. Effect of germination and incubation on Zn, Fe, and Ca bioavailability values of soybeans (Glycine max L.) and mung beans (Vigna radiate L.). Food Sci Biotechnol 24, 1829–1835 (2015). https://doi.org/10.1007/s10068-015-0239-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0239-0

Keywords

Navigation